File size: 3,458 Bytes
4e937f5
da03023
 
021e3cd
 
da03023
021e3cd
 
 
 
 
 
e3ca1d7
021e3cd
e308ec0
12d1dd5
e3ca1d7
4e937f5
 
 
 
 
 
 
e3ca1d7
4e937f5
 
 
 
 
 
 
e6d4457
 
 
 
4e937f5
 
da03023
 
 
 
4e937f5
da03023
 
e6d4457
da03023
 
 
 
001ce47
 
da03023
4e937f5
e308ec0
 
ad44100
ed9d3e7
 
e3ca1d7
12d1dd5
 
e3ca1d7
12d1dd5
 
e3ca1d7
12d1dd5
2d0b3a0
 
e3ca1d7
 
 
12d1dd5
e3ca1d7
 
 
 
12d1dd5
ed9d3e7
 
 
4e937f5
 
 
 
 
 
 
 
e3ca1d7
79facd7
77d21ca
4e937f5
 
 
77d21ca
4e937f5
 
 
 
e3ca1d7
4e937f5
 
 
 
79facd7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import gradio as gr
import requests
import json
import os
from dotenv import load_dotenv

load_dotenv()

API_URL = os.getenv("API_URL")
API_TOKEN = os.getenv("API_TOKEN")

if not API_URL or not API_TOKEN:
    raise ValueError("invalid API_URL | API_TOKEN")

print(f"[INFO] starting:")
print(f"[INFO] API_URL: {API_URL[:6]}...{API_URL[-12:]}")
print(f"[INFO] API_TOKEN: {API_TOKEN[:10]}...{API_TOKEN[-10:]}")

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""

def respond(
    message,
    history: list[dict],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    # 添加历史消息
    messages.extend(history)
    
    # 添加当前用户消息
    messages.append({"role": "user", "content": message})

    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {API_TOKEN}"
    }

    data = {
        "model": "/data/DMind-1-mini",
        "stream": False,
        "messages": messages,
        "temperature": temperature,
        "top_p": top_p,
        "top_k": 20,
        "min_p": 0.1,
        "max_tokens": 16384
    }

    print(f"[INFO] process user msg...")
    print(f"[INFO] userMsg: {message}")

    try:
        with requests.post(API_URL, headers=headers, json=data) as r:
            # print(f"[INFO] response status: {r.status_code}")
            if r.status_code == 200:
                json_response = r.json()
                # print(f"[INFO] response json: {json_response}")
                if 'choices' in json_response and len(json_response['choices']) > 0:
                    content = json_response['choices'][0].get('message', {}).get('content', '')
                    # print(f"[INFO] response content: {content}")
                    if content:
                        if '<think>' in content and '</think>' in content:
                            content = content.split('</think>')[-1].strip()
                        if '**Final Answer**' in content:
                            content = content.split('**Final Answer**')[-1].strip()
                        print(f"[INFO] final response: {content}")
                        return content
                else:
                    print(f"[ERROR] No choices in response: {json_response}")
            else:
                print(f"[ERROR] Bad status code: {r.status_code}, response: {r.text}")
            return "Service temporarily unavailable"
    except Exception as e:
        print(f"[ERROR] Request error: {e}")
        return "Service error occurred"


"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are DMind AI Assistant, built by DMind.AI. Never present as Qwen, ChatGPT, Tongyi, OpenAI, etc.", label="System message"),
        gr.Slider(minimum=1, maximum=32768, value=16384, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.6, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
    type="messages"
)


if __name__ == "__main__":
    demo.launch()