Spaces:
Running
Running
File size: 3,650 Bytes
4e937f5 da03023 021e3cd da03023 021e3cd e3ca1d7 021e3cd e308ec0 12d1dd5 e3ca1d7 4e937f5 e3ca1d7 4e937f5 e6d4457 4e937f5 da03023 4e937f5 da03023 7aa4134 da03023 001ce47 da03023 4e937f5 7aa4134 ad44100 ed9d3e7 7aa4134 12d1dd5 7aa4134 e3ca1d7 7aa4134 ed9d3e7 7aa4134 4e937f5 e3ca1d7 79facd7 77d21ca 4e937f5 77d21ca 4e937f5 e3ca1d7 4e937f5 79facd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
import gradio as gr
import requests
import json
import os
from dotenv import load_dotenv
load_dotenv()
API_URL = os.getenv("API_URL")
API_TOKEN = os.getenv("API_TOKEN")
if not API_URL or not API_TOKEN:
raise ValueError("invalid API_URL | API_TOKEN")
print(f"[INFO] starting:")
print(f"[INFO] API_URL: {API_URL[:6]}...{API_URL[-12:]}")
print(f"[INFO] API_TOKEN: {API_TOKEN[:10]}...{API_TOKEN[-10:]}")
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
def respond(
message,
history: list[dict],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
messages.extend(history)
messages.append({"role": "user", "content": message})
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {API_TOKEN}"
}
data = {
"model": "/data/DMind-1-mini",
"stream": True,
"messages": messages,
"temperature": temperature,
"top_p": top_p,
"top_k": 20,
"min_p": 0.1,
"max_tokens": 16384
}
# print(f"[INFO] process user msg...")
# print(f"[INFO] userMsg: {message}")
try:
with requests.post(API_URL, headers=headers, json=data, stream=True) as r:
if r.status_code == 200:
current_response = ""
for line in r.iter_lines():
if line:
line = line.decode('utf-8')
if line.startswith('data: '):
try:
json_response = json.loads(line[6:])
if 'choices' in json_response and len(json_response['choices']) > 0:
delta = json_response['choices'][0].get('delta', {})
if 'content' in delta:
content = delta['content']
if content:
content = content.replace('<', '<').replace('>', '>')
content = content.replace('*', '\\*')
current_response += content
yield current_response
except json.JSONDecodeError:
continue
# print(f"[INFO] final response: {current_response}")
else:
print(f"[ERROR] Bad status code: {r.status_code}, response: {r.text}")
yield "Service temporarily unavailable"
except Exception as e:
print(f"[ERROR] Request error: {e}")
yield "Service error occurred"
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are DMind AI Assistant, built by DMind.AI. Never present as Qwen, ChatGPT, Tongyi, OpenAI, etc.", label="System message"),
gr.Slider(minimum=1, maximum=32768, value=16384, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.6, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
type="messages"
)
if __name__ == "__main__":
demo.launch()
|