File size: 3,650 Bytes
4e937f5
da03023
 
021e3cd
 
da03023
021e3cd
 
 
 
 
 
e3ca1d7
021e3cd
e308ec0
12d1dd5
e3ca1d7
4e937f5
 
 
 
 
 
 
e3ca1d7
4e937f5
 
 
 
 
 
 
e6d4457
 
4e937f5
 
da03023
 
 
 
4e937f5
da03023
 
7aa4134
da03023
 
 
 
001ce47
 
da03023
4e937f5
7aa4134
 
ad44100
ed9d3e7
7aa4134
12d1dd5
7aa4134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3ca1d7
 
7aa4134
ed9d3e7
 
7aa4134
4e937f5
 
 
 
 
 
 
 
e3ca1d7
79facd7
77d21ca
4e937f5
 
 
77d21ca
4e937f5
 
 
 
e3ca1d7
4e937f5
 
 
 
79facd7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import gradio as gr
import requests
import json
import os
from dotenv import load_dotenv

load_dotenv()

API_URL = os.getenv("API_URL")
API_TOKEN = os.getenv("API_TOKEN")

if not API_URL or not API_TOKEN:
    raise ValueError("invalid API_URL | API_TOKEN")

print(f"[INFO] starting:")
print(f"[INFO] API_URL: {API_URL[:6]}...{API_URL[-12:]}")
print(f"[INFO] API_TOKEN: {API_TOKEN[:10]}...{API_TOKEN[-10:]}")

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""

def respond(
    message,
    history: list[dict],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    messages.extend(history)
    
    messages.append({"role": "user", "content": message})

    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {API_TOKEN}"
    }

    data = {
        "model": "/data/DMind-1-mini",
        "stream": True,
        "messages": messages,
        "temperature": temperature,
        "top_p": top_p,
        "top_k": 20,
        "min_p": 0.1,
        "max_tokens": 16384
    }

    # print(f"[INFO] process user msg...")
    # print(f"[INFO] userMsg: {message}")

    try:
        with requests.post(API_URL, headers=headers, json=data, stream=True) as r:
            if r.status_code == 200:
                current_response = ""
                for line in r.iter_lines():
                    if line:
                        line = line.decode('utf-8')
                        if line.startswith('data: '):
                            try:
                                json_response = json.loads(line[6:])
                                if 'choices' in json_response and len(json_response['choices']) > 0:
                                    delta = json_response['choices'][0].get('delta', {})
                                    if 'content' in delta:
                                        content = delta['content']
                                        if content:
                                            content = content.replace('<', '&lt;').replace('>', '&gt;')
                                            content = content.replace('*', '\\*')
                                            current_response += content
                                            yield current_response
                            except json.JSONDecodeError:
                                continue
                # print(f"[INFO] final response: {current_response}")
            else:
                print(f"[ERROR] Bad status code: {r.status_code}, response: {r.text}")
                yield "Service temporarily unavailable"
    except Exception as e:
        print(f"[ERROR] Request error: {e}")
        yield "Service error occurred"


"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are DMind AI Assistant, built by DMind.AI. Never present as Qwen, ChatGPT, Tongyi, OpenAI, etc.", label="System message"),
        gr.Slider(minimum=1, maximum=32768, value=16384, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.6, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
    type="messages"
)


if __name__ == "__main__":
    demo.launch()