Update app.py
Browse files
app.py
CHANGED
|
@@ -62,634 +62,621 @@ client = OpenAI(
|
|
| 62 |
hf_api_key = os.environ.get("hf_token")
|
| 63 |
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
#
|
| 73 |
-
|
| 74 |
|
| 75 |
-
#
|
| 76 |
-
|
| 77 |
|
| 78 |
-
|
| 79 |
|
| 80 |
-
#
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
#
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
#
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
#
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
#
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
#
|
| 141 |
-
#
|
| 142 |
-
#
|
| 143 |
-
#
|
| 144 |
-
#
|
| 145 |
-
#
|
| 146 |
-
#
|
| 147 |
-
#
|
| 148 |
-
#
|
| 149 |
-
|
| 150 |
-
#
|
| 151 |
-
#
|
| 152 |
-
#
|
| 153 |
-
|
| 154 |
-
#
|
| 155 |
-
#
|
| 156 |
-
#
|
| 157 |
-
#
|
| 158 |
-
#
|
| 159 |
-
|
| 160 |
-
#
|
| 161 |
-
#
|
| 162 |
-
|
| 163 |
-
#
|
| 164 |
-
#
|
| 165 |
-
#
|
| 166 |
-
|
| 167 |
-
#
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
#
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
#
|
| 177 |
-
#
|
| 178 |
|
| 179 |
-
#
|
| 180 |
-
|
| 181 |
-
|
| 182 |
|
| 183 |
-
|
| 184 |
-
#
|
| 185 |
-
|
| 186 |
-
|
| 187 |
|
| 188 |
-
#
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
#
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
#
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
|
| 200 |
-
#
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
|
| 205 |
-
#
|
| 206 |
-
|
| 207 |
-
|
| 208 |
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
#
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
#
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
#
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
#
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
#
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
#
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
#
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
#
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
#
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
#
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
#
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
#
|
| 301 |
-
|
| 302 |
-
#
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
#
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
#
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
#
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
#
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
#
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
#
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
#
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
#
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
#
|
| 510 |
-
#
|
| 511 |
-
#
|
| 512 |
-
#
|
| 513 |
-
#
|
| 514 |
-
#
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
#
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
|
| 556 |
-
|
| 557 |
-
|
| 558 |
-
#
|
| 559 |
-
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
#
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
#
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
#
|
| 584 |
-
|
| 585 |
-
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
#
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
#
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
|
| 599 |
-
|
| 600 |
-
#
|
| 601 |
-
|
| 602 |
-
|
| 603 |
-
|
| 604 |
-
|
| 605 |
-
|
| 606 |
-
|
| 607 |
-
|
| 608 |
-
|
| 609 |
-
|
| 610 |
-
|
| 611 |
-
#
|
| 612 |
-
|
| 613 |
-
|
| 614 |
-
|
| 615 |
-
|
| 616 |
-
|
| 617 |
-
|
| 618 |
-
|
| 619 |
-
|
| 620 |
-
|
| 621 |
-
|
| 622 |
-
|
| 623 |
-
|
|
|
|
| 624 |
|
| 625 |
-
#
|
| 626 |
-
|
| 627 |
-
|
| 628 |
-
|
| 629 |
-
|
| 630 |
-
|
| 631 |
-
|
| 632 |
-
|
| 633 |
-
|
| 634 |
-
|
| 635 |
-
|
| 636 |
-
|
| 637 |
-
|
| 638 |
-
|
| 639 |
-
|
| 640 |
-
|
| 641 |
-
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
|
| 650 |
|
| 651 |
-
#
|
| 652 |
-
|
| 653 |
-
|
| 654 |
-
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
|
| 659 |
-
|
| 660 |
-
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
|
| 667 |
-
|
| 668 |
-
|
| 669 |
-
|
| 670 |
-
#
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
|
| 674 |
-
|
| 675 |
-
|
| 676 |
-
|
| 677 |
-
|
| 678 |
-
|
| 679 |
-
#
|
| 680 |
-
|
| 681 |
-
# demo.launch()
|
| 682 |
-
|
| 683 |
-
import gradio as gr
|
| 684 |
-
|
| 685 |
-
def dummy_func(x):
|
| 686 |
-
return x, "Success"
|
| 687 |
-
|
| 688 |
-
with gr.Blocks() as demo:
|
| 689 |
-
inp = gr.Textbox()
|
| 690 |
-
out1 = gr.Textbox()
|
| 691 |
-
out2 = gr.Textbox()
|
| 692 |
-
btn = gr.Button("Run")
|
| 693 |
-
btn.click(dummy_func, inputs=inp, outputs=[out1, out2])
|
| 694 |
-
|
| 695 |
demo.launch()
|
|
|
|
| 62 |
hf_api_key = os.environ.get("hf_token")
|
| 63 |
|
| 64 |
|
| 65 |
+
def silence(duration, fps=44100):
|
| 66 |
+
"""
|
| 67 |
+
Returns a silent AudioClip of the specified duration.
|
| 68 |
+
"""
|
| 69 |
+
return AudioArrayClip(np.zeros((int(fps*duration), 2)), fps=fps)
|
| 70 |
+
|
| 71 |
+
def count_words_or_characters(text):
|
| 72 |
+
# Count non-Chinese words
|
| 73 |
+
non_chinese_words = len(re.findall(r'\b[a-zA-Z0-9]+\b', text))
|
| 74 |
|
| 75 |
+
# Count Chinese characters
|
| 76 |
+
chinese_chars = len(re.findall(r'[\u4e00-\u9fff]', text))
|
| 77 |
|
| 78 |
+
return non_chinese_words + chinese_chars
|
| 79 |
|
| 80 |
+
# Define the passcode
|
| 81 |
+
PASSCODE = "show_feedback_db"
|
| 82 |
+
|
| 83 |
+
css = """
|
| 84 |
+
/* Adjust row height */
|
| 85 |
+
.dataframe-container tr {
|
| 86 |
+
height: 50px !important;
|
| 87 |
+
}
|
| 88 |
+
|
| 89 |
+
/* Ensure text wrapping and prevent overflow */
|
| 90 |
+
.dataframe-container td {
|
| 91 |
+
white-space: normal !important;
|
| 92 |
+
word-break: break-word !important;
|
| 93 |
+
}
|
| 94 |
+
|
| 95 |
+
/* Set column widths */
|
| 96 |
+
[data-testid="block-container"] .scrolling-dataframe th:nth-child(1),
|
| 97 |
+
[data-testid="block-container"] .scrolling-dataframe td:nth-child(1) {
|
| 98 |
+
width: 6%; /* Start column */
|
| 99 |
+
}
|
| 100 |
+
|
| 101 |
+
[data-testid="block-container"] .scrolling-dataframe th:nth-child(2),
|
| 102 |
+
[data-testid="block-container"] .scrolling-dataframe td:nth-child(2) {
|
| 103 |
+
width: 47%; /* Original text */
|
| 104 |
+
}
|
| 105 |
+
|
| 106 |
+
[data-testid="block-container"] .scrolling-dataframe th:nth-child(3),
|
| 107 |
+
[data-testid="block-container"] .scrolling-dataframe td:nth-child(3) {
|
| 108 |
+
width: 47%; /* Translated text */
|
| 109 |
+
}
|
| 110 |
+
|
| 111 |
+
[data-testid="block-container"] .scrolling-dataframe th:nth-child(4),
|
| 112 |
+
[data-testid="block-container"] .scrolling-dataframe td:nth-child(4) {
|
| 113 |
+
display: none !important;
|
| 114 |
+
}
|
| 115 |
+
"""
|
| 116 |
+
|
| 117 |
+
# Function to save feedback or provide access to the database file
|
| 118 |
+
def handle_feedback(feedback):
|
| 119 |
+
feedback = feedback.strip() # Clean up leading/trailing whitespace
|
| 120 |
+
if not feedback:
|
| 121 |
+
return "Feedback cannot be empty.", None
|
| 122 |
+
|
| 123 |
+
if feedback == PASSCODE:
|
| 124 |
+
# Provide access to the feedback.db file
|
| 125 |
+
return "Access granted! Download the database file below.", "feedback.db"
|
| 126 |
+
else:
|
| 127 |
+
# Save feedback to the database
|
| 128 |
+
with sqlite3.connect("feedback.db") as conn:
|
| 129 |
+
cursor = conn.cursor()
|
| 130 |
+
cursor.execute("CREATE TABLE IF NOT EXISTS studio_feedback (id INTEGER PRIMARY KEY, comment TEXT)")
|
| 131 |
+
cursor.execute("INSERT INTO studio_feedback (comment) VALUES (?)", (feedback,))
|
| 132 |
+
conn.commit()
|
| 133 |
+
return "Thank you for your feedback!", None
|
| 134 |
+
|
| 135 |
+
# Configure logging
|
| 136 |
+
logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s")
|
| 137 |
+
logger = logging.getLogger(__name__)
|
| 138 |
+
logger.info(f"MoviePy Version: {moviepy.__version__}")
|
| 139 |
+
|
| 140 |
+
# def segment_background_audio(audio_path, output_path="background_segments.wav"):
|
| 141 |
+
# # Step 2: Initialize pyannote voice activity detection pipeline (you need Hugging Face token)
|
| 142 |
+
# pipeline = Pipeline.from_pretrained(
|
| 143 |
+
# "pyannote/voice-activity-detection",
|
| 144 |
+
# use_auth_token=hf_api_key
|
| 145 |
+
# )
|
| 146 |
+
# # Step 3: Run VAD to get speech segments
|
| 147 |
+
# vad_result = pipeline(audio_path)
|
| 148 |
+
# print(f"Detected speech segments: {vad_result}")
|
| 149 |
+
|
| 150 |
+
# # Step 4: Load full audio and subtract speech segments
|
| 151 |
+
# full_audio = AudioSegment.from_wav(audio_path)
|
| 152 |
+
# background_audio = AudioSegment.silent(duration=len(full_audio))
|
| 153 |
+
|
| 154 |
+
# for segment in vad_result.itersegments():
|
| 155 |
+
# start_ms = int(segment.start * 1000)
|
| 156 |
+
# end_ms = int(segment.end * 1000)
|
| 157 |
+
# # Remove speech by muting that portion
|
| 158 |
+
# background_audio = background_audio.overlay(AudioSegment.silent(duration=end_ms - start_ms), position=start_ms)
|
| 159 |
+
|
| 160 |
+
# # Step 5: Subtract background_audio from full_audio
|
| 161 |
+
# result_audio = full_audio.overlay(background_audio)
|
| 162 |
+
|
| 163 |
+
# # Step 6: Export non-speech segments
|
| 164 |
+
# result_audio.export(output_path, format="wav")
|
| 165 |
+
# print(f"Saved non-speech (background) audio to: {output_path}")
|
| 166 |
+
|
| 167 |
+
# return True
|
| 168 |
+
|
| 169 |
+
def transcribe_video_with_speakers(video_path):
|
| 170 |
+
# Extract audio from video
|
| 171 |
+
video = VideoFileClip(video_path)
|
| 172 |
+
audio_path = "audio.wav"
|
| 173 |
+
video.audio.write_audiofile(audio_path)
|
| 174 |
+
logger.info(f"Audio extracted from video: {audio_path}")
|
| 175 |
+
|
| 176 |
+
# segment_result = segment_background_audio(audio_path)
|
| 177 |
+
# print(f"Saved non-speech (background) audio to local")
|
| 178 |
|
| 179 |
+
# Set up device
|
| 180 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 181 |
+
logger.info(f"Using device: {device}")
|
| 182 |
|
| 183 |
+
try:
|
| 184 |
+
# Load a medium model with float32 for broader compatibility
|
| 185 |
+
model = whisperx.load_model("medium", device=device, compute_type="float32")
|
| 186 |
+
logger.info("WhisperX model loaded")
|
| 187 |
|
| 188 |
+
# Transcribe
|
| 189 |
+
result = model.transcribe(audio_path, chunk_size=5, print_progress = True)
|
| 190 |
+
logger.info("Audio transcription completed")
|
| 191 |
+
|
| 192 |
+
# Get the detected language
|
| 193 |
+
detected_language = result["language"]
|
| 194 |
+
logger.debug(f"Detected language: {detected_language}")
|
| 195 |
+
# Alignment
|
| 196 |
+
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
|
| 197 |
+
result = whisperx.align(result["segments"], model_a, metadata, audio_path, device)
|
| 198 |
+
logger.info("Transcription alignment completed")
|
| 199 |
|
| 200 |
+
# Diarization (works independently of Whisper model size)
|
| 201 |
+
diarize_model = whisperx.DiarizationPipeline(use_auth_token=hf_api_key, device=device)
|
| 202 |
+
diarize_segments = diarize_model(audio_path)
|
| 203 |
+
logger.info("Speaker diarization completed")
|
| 204 |
|
| 205 |
+
# Assign speakers
|
| 206 |
+
result = whisperx.assign_word_speakers(diarize_segments, result)
|
| 207 |
+
logger.info("Speakers assigned to transcribed segments")
|
| 208 |
|
| 209 |
+
except Exception as e:
|
| 210 |
+
logger.error(f"❌ WhisperX pipeline failed: {e}")
|
| 211 |
+
|
| 212 |
+
# Extract timestamps, text, and speaker IDs
|
| 213 |
+
transcript_with_speakers = [
|
| 214 |
+
{
|
| 215 |
+
"start": segment["start"],
|
| 216 |
+
"end": segment["end"],
|
| 217 |
+
"text": segment["text"],
|
| 218 |
+
"speaker": segment["speaker"]
|
| 219 |
+
}
|
| 220 |
+
for segment in result["segments"]
|
| 221 |
+
]
|
| 222 |
+
|
| 223 |
+
# Collect audio for each speaker
|
| 224 |
+
speaker_audio = {}
|
| 225 |
+
for segment in result["segments"]:
|
| 226 |
+
speaker = segment["speaker"]
|
| 227 |
+
if speaker not in speaker_audio:
|
| 228 |
+
speaker_audio[speaker] = []
|
| 229 |
+
speaker_audio[speaker].append((segment["start"], segment["end"]))
|
| 230 |
+
|
| 231 |
+
# Collapse and truncate speaker audio
|
| 232 |
+
speaker_sample_paths = {}
|
| 233 |
+
audio_clip = AudioFileClip(audio_path)
|
| 234 |
+
for speaker, segments in speaker_audio.items():
|
| 235 |
+
speaker_clips = [audio_clip.subclip(start, end) for start, end in segments]
|
| 236 |
+
combined_clip = concatenate_audioclips(speaker_clips)
|
| 237 |
+
truncated_clip = combined_clip.subclip(0, min(30, combined_clip.duration))
|
| 238 |
+
sample_path = f"speaker_{speaker}_sample.wav"
|
| 239 |
+
truncated_clip.write_audiofile(sample_path)
|
| 240 |
+
speaker_sample_paths[speaker] = sample_path
|
| 241 |
+
logger.info(f"Created sample for {speaker}: {sample_path}")
|
| 242 |
+
|
| 243 |
+
# Clean up
|
| 244 |
+
video.close()
|
| 245 |
+
audio_clip.close()
|
| 246 |
+
os.remove(audio_path)
|
| 247 |
+
|
| 248 |
+
return transcript_with_speakers, detected_language
|
| 249 |
+
|
| 250 |
+
# Function to get the appropriate translation model based on target language
|
| 251 |
+
def get_translation_model(source_language, target_language):
|
| 252 |
+
"""
|
| 253 |
+
Get the translation model based on the source and target language.
|
| 254 |
+
|
| 255 |
+
Parameters:
|
| 256 |
+
- target_language (str): The language to translate the content into (e.g., 'es', 'fr').
|
| 257 |
+
- source_language (str): The language of the input content (default is 'en' for English).
|
| 258 |
|
| 259 |
+
Returns:
|
| 260 |
+
- str: The translation model identifier.
|
| 261 |
+
"""
|
| 262 |
+
# List of allowable languages
|
| 263 |
+
allowable_languages = ["en", "es", "fr", "zh", "de", "it", "pt", "ja", "ko", "ru"]
|
| 264 |
+
|
| 265 |
+
# Validate source and target languages
|
| 266 |
+
if source_language not in allowable_languages:
|
| 267 |
+
logger.debug(f"Invalid source language '{source_language}'. Supported languages are: {', '.join(allowable_languages)}")
|
| 268 |
+
# Return a default model if source language is invalid
|
| 269 |
+
source_language = "en" # Default to 'en'
|
| 270 |
+
|
| 271 |
+
if target_language not in allowable_languages:
|
| 272 |
+
logger.debug(f"Invalid target language '{target_language}'. Supported languages are: {', '.join(allowable_languages)}")
|
| 273 |
+
# Return a default model if target language is invalid
|
| 274 |
+
target_language = "zh" # Default to 'zh'
|
| 275 |
+
|
| 276 |
+
if source_language == target_language:
|
| 277 |
+
source_language = "en" # Default to 'en'
|
| 278 |
+
target_language = "zh" # Default to 'zh'
|
| 279 |
+
|
| 280 |
+
# Return the model using string concatenation
|
| 281 |
+
return f"Helsinki-NLP/opus-mt-{source_language}-{target_language}"
|
| 282 |
+
|
| 283 |
+
def translate_single_entry(entry, translator):
|
| 284 |
+
original_text = entry["text"]
|
| 285 |
+
translated_text = translator(original_text)[0]['translation_text']
|
| 286 |
+
return {
|
| 287 |
+
"start": entry["start"],
|
| 288 |
+
"original": original_text,
|
| 289 |
+
"translated": translated_text,
|
| 290 |
+
"end": entry["end"],
|
| 291 |
+
"speaker": entry["speaker"]
|
| 292 |
+
}
|
| 293 |
+
|
| 294 |
+
def translate_text(transcription_json, source_language, target_language):
|
| 295 |
+
# Load the translation model for the specified target language
|
| 296 |
+
translation_model_id = get_translation_model(source_language, target_language)
|
| 297 |
+
logger.debug(f"Translation model: {translation_model_id}")
|
| 298 |
+
translator = pipeline("translation", model=translation_model_id)
|
| 299 |
+
|
| 300 |
+
# Use ThreadPoolExecutor to parallelize translations
|
| 301 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
| 302 |
+
# Submit all translation tasks and collect results
|
| 303 |
+
translate_func = lambda entry: translate_single_entry(entry, translator)
|
| 304 |
+
translated_json = list(executor.map(translate_func, transcription_json))
|
| 305 |
+
|
| 306 |
+
# Sort the translated_json by start time
|
| 307 |
+
translated_json.sort(key=lambda x: x["start"])
|
| 308 |
+
|
| 309 |
+
# Log the components being added to translated_json
|
| 310 |
+
for entry in translated_json:
|
| 311 |
+
logger.debug("Added to translated_json: start=%s, original=%s, translated=%s, end=%s, speaker=%s",
|
| 312 |
+
entry["start"], entry["original"], entry["translated"], entry["end"], entry["speaker"])
|
| 313 |
+
|
| 314 |
+
return translated_json
|
| 315 |
+
|
| 316 |
+
def update_translations(file, edited_table, mode):
|
| 317 |
+
"""
|
| 318 |
+
Update the translations based on user edits in the Gradio Dataframe.
|
| 319 |
+
"""
|
| 320 |
+
output_video_path = "output_video.mp4"
|
| 321 |
+
logger.debug(f"Editable Table: {edited_table}")
|
| 322 |
+
|
| 323 |
+
if file is None:
|
| 324 |
+
logger.info("No file uploaded. Please upload a video/audio file.")
|
| 325 |
+
return None, [], None, "No file uploaded. Please upload a video/audio file."
|
| 326 |
|
| 327 |
+
try:
|
| 328 |
+
start_time = time.time() # Start the timer
|
| 329 |
+
|
| 330 |
+
# Convert the edited_table (list of lists) back to list of dictionaries
|
| 331 |
+
updated_translations = [
|
| 332 |
+
{
|
| 333 |
+
"start": row["start"], # Access by column name
|
| 334 |
+
"original": row["original"],
|
| 335 |
+
"translated": row["translated"],
|
| 336 |
+
"end": row["end"]
|
| 337 |
+
}
|
| 338 |
+
for _, row in edited_table.iterrows()
|
| 339 |
+
]
|
| 340 |
+
|
| 341 |
+
# Call the function to process the video with updated translations
|
| 342 |
+
add_transcript_voiceover(file.name, updated_translations, output_video_path, mode=="Transcription with Voiceover")
|
| 343 |
+
|
| 344 |
+
# Calculate elapsed time
|
| 345 |
+
elapsed_time = time.time() - start_time
|
| 346 |
+
elapsed_time_display = f"Updates applied successfully in {elapsed_time:.2f} seconds."
|
| 347 |
+
|
| 348 |
+
return output_video_path, elapsed_time_display
|
| 349 |
+
|
| 350 |
+
except Exception as e:
|
| 351 |
+
raise ValueError(f"Error updating translations: {e}")
|
| 352 |
+
|
| 353 |
+
def create_subtitle_clip_pil(text, start_time, end_time, video_width, video_height, font_path):
|
| 354 |
+
try:
|
| 355 |
+
subtitle_width = int(video_width * 0.8)
|
| 356 |
+
subtitle_font_size = int(video_height // 20)
|
| 357 |
+
font = ImageFont.truetype(font_path, subtitle_font_size)
|
| 358 |
+
|
| 359 |
+
dummy_img = Image.new("RGBA", (subtitle_width, 1), (0, 0, 0, 0))
|
| 360 |
+
draw = ImageDraw.Draw(dummy_img)
|
| 361 |
+
|
| 362 |
+
lines = []
|
| 363 |
+
line = ""
|
| 364 |
+
for word in text.split():
|
| 365 |
+
test_line = f"{line} {word}".strip()
|
| 366 |
+
bbox = draw.textbbox((0, 0), test_line, font=font)
|
| 367 |
+
w = bbox[2] - bbox[0]
|
| 368 |
+
if w <= subtitle_width - 10:
|
| 369 |
+
line = test_line
|
| 370 |
+
else:
|
| 371 |
+
lines.append(line)
|
| 372 |
+
line = word
|
| 373 |
+
lines.append(line)
|
| 374 |
+
|
| 375 |
+
line_heights = [draw.textbbox((0, 0), l, font=font)[3] - draw.textbbox((0, 0), l, font=font)[1] for l in lines]
|
| 376 |
+
total_height = sum(line_heights) + (len(lines) - 1) * 5
|
| 377 |
+
img = Image.new("RGBA", (subtitle_width, total_height), (0, 0, 0, 0))
|
| 378 |
+
draw = ImageDraw.Draw(img)
|
| 379 |
+
|
| 380 |
+
y = 0
|
| 381 |
+
for idx, line in enumerate(lines):
|
| 382 |
+
bbox = draw.textbbox((0, 0), line, font=font)
|
| 383 |
+
w = bbox[2] - bbox[0]
|
| 384 |
+
draw.text(((subtitle_width - w) // 2, y), line, font=font, fill="yellow")
|
| 385 |
+
y += line_heights[idx] + 5
|
| 386 |
|
| 387 |
+
img_np = np.array(img) # <- ✅ Fix: convert to NumPy
|
| 388 |
+
txt_clip = ImageClip(img_np).set_start(start_time).set_duration(end_time - start_time).set_position("bottom").set_opacity(0.8)
|
| 389 |
+
return txt_clip
|
| 390 |
+
except Exception as e:
|
| 391 |
+
logger.error(f"\u274c Failed to create subtitle clip: {e}")
|
| 392 |
+
return None
|
| 393 |
+
|
| 394 |
+
def process_entry(entry, i, video_width, video_height, add_voiceover, target_language, font_path, speaker_sample_paths=None):
|
| 395 |
+
logger.debug(f"Processing entry {i}: {entry}")
|
| 396 |
+
error_message = None
|
| 397 |
+
|
| 398 |
+
try:
|
| 399 |
+
txt_clip = create_subtitle_clip_pil(entry["translated"], entry["start"], entry["end"], video_width, video_height, font_path)
|
| 400 |
+
except Exception as e:
|
| 401 |
+
error_message = f"❌ Failed to create subtitle clip for entry {i}: {e}"
|
| 402 |
+
logger.error(error_message)
|
| 403 |
+
txt_clip = None
|
| 404 |
+
|
| 405 |
+
audio_segment = None
|
| 406 |
+
if add_voiceover:
|
| 407 |
+
try:
|
| 408 |
+
segment_audio_path = f"segment_{i}_voiceover.wav"
|
| 409 |
+
desired_duration = entry["end"] - entry["start"]
|
| 410 |
+
speaker = entry.get("speaker", "default")
|
| 411 |
+
speaker_wav_path = f"speaker_{speaker}_sample.wav"
|
| 412 |
+
|
| 413 |
+
output_path, status_msg, tts_error = generate_voiceover_clone([entry], desired_duration, target_language, speaker_wav_path, segment_audio_path)
|
| 414 |
+
|
| 415 |
+
if tts_error:
|
| 416 |
+
error_message = error_message + " | " + tts_error if error_message else tts_error
|
| 417 |
+
|
| 418 |
+
if not output_path or not os.path.exists(segment_audio_path):
|
| 419 |
+
raise FileNotFoundError(f"Voiceover file not generated at: {segment_audio_path}")
|
| 420 |
+
|
| 421 |
+
audio_clip = AudioFileClip(segment_audio_path)
|
| 422 |
+
logger.debug(f"Audio clip duration: {audio_clip.duration}, Desired duration: {desired_duration}")
|
| 423 |
+
|
| 424 |
+
if audio_clip.duration < desired_duration:
|
| 425 |
+
silence_duration = desired_duration - audio_clip.duration
|
| 426 |
+
audio_clip = concatenate_audioclips([audio_clip, silence(duration=silence_duration)])
|
| 427 |
+
logger.info(f"Padded audio with {silence_duration} seconds of silence.")
|
| 428 |
+
|
| 429 |
+
audio_segment = audio_clip.set_start(entry["start"]).set_duration(desired_duration)
|
| 430 |
+
|
| 431 |
+
except Exception as e:
|
| 432 |
+
err = f"❌ Failed to generate audio segment for entry {i}: {e}"
|
| 433 |
+
logger.error(err)
|
| 434 |
+
error_message = error_message + " | " + err if error_message else err
|
| 435 |
+
audio_segment = None
|
| 436 |
+
|
| 437 |
+
return i, txt_clip, audio_segment, error_message
|
| 438 |
|
| 439 |
+
def add_transcript_voiceover(video_path, translated_json, output_path, add_voiceover=False, target_language="en", speaker_sample_paths=None):
|
| 440 |
+
video = VideoFileClip(video_path)
|
| 441 |
+
font_path = "./NotoSansSC-Regular.ttf"
|
| 442 |
+
|
| 443 |
+
text_clips = []
|
| 444 |
+
audio_segments = []
|
| 445 |
+
error_messages = []
|
| 446 |
+
|
| 447 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
| 448 |
+
futures = [executor.submit(process_entry, entry, i, video.w, video.h, add_voiceover, target_language, font_path, speaker_sample_paths)
|
| 449 |
+
for i, entry in enumerate(translated_json)]
|
| 450 |
+
|
| 451 |
+
results = []
|
| 452 |
+
for future in concurrent.futures.as_completed(futures):
|
| 453 |
+
try:
|
| 454 |
+
i, txt_clip, audio_segment, error = future.result()
|
| 455 |
+
results.append((i, txt_clip, audio_segment))
|
| 456 |
+
if error:
|
| 457 |
+
error_messages.append(f"[Entry {i}] {error}")
|
| 458 |
+
except Exception as e:
|
| 459 |
+
err = f"❌ Unexpected error in future result: {e}"
|
| 460 |
+
logger.error(err)
|
| 461 |
+
error_messages.append(err)
|
| 462 |
+
|
| 463 |
+
# Sort by entry index to ensure order
|
| 464 |
+
results.sort(key=lambda x: x[0])
|
| 465 |
+
text_clips = [clip for _, clip, _ in results if clip]
|
| 466 |
+
if add_voiceover:
|
| 467 |
+
audio_segments = [segment for _, _, segment in results if segment]
|
| 468 |
+
|
| 469 |
+
final_video = CompositeVideoClip([video] + text_clips)
|
| 470 |
+
|
| 471 |
+
if add_voiceover:
|
| 472 |
+
if audio_segments:
|
| 473 |
+
final_audio = CompositeAudioClip(audio_segments).set_duration(video.duration)
|
| 474 |
+
final_video = final_video.set_audio(final_audio)
|
| 475 |
+
else:
|
| 476 |
+
logger.warning("⚠️ No audio segments available. Adding silent fallback.")
|
| 477 |
+
silent_audio = AudioClip(lambda t: 0, duration=video.duration)
|
| 478 |
+
final_video = final_video.set_audio(silent_audio)
|
| 479 |
+
|
| 480 |
+
logger.info(f"Saving the final video to: {output_path}")
|
| 481 |
+
final_video.write_videofile(output_path, codec="libx264", audio_codec="aac")
|
| 482 |
+
|
| 483 |
+
logger.info("Video processing completed successfully.")
|
| 484 |
+
|
| 485 |
+
# Optional: return errors
|
| 486 |
+
if error_messages:
|
| 487 |
+
logger.warning("⚠️ Errors encountered during processing:")
|
| 488 |
+
for msg in error_messages:
|
| 489 |
+
logger.warning(msg)
|
| 490 |
+
|
| 491 |
+
return error_messages
|
| 492 |
+
|
| 493 |
+
# Initialize TTS model only once (outside the function)
|
| 494 |
+
tts = TTS(model_name="tts_models/multilingual/multi-dataset/xtts_v2")
|
| 495 |
+
|
| 496 |
+
def generate_voiceover_clone(translated_json, desired_duration, target_language, speaker_wav_path, output_audio_path):
|
| 497 |
+
try:
|
| 498 |
+
full_text = " ".join(entry["translated"] for entry in translated_json if "translated" in entry and entry["translated"].strip())
|
| 499 |
+
if not full_text.strip():
|
| 500 |
+
msg = "❌ Translated text is empty."
|
| 501 |
+
logger.error(msg)
|
| 502 |
+
return None, msg, msg
|
| 503 |
+
|
| 504 |
+
if not speaker_wav_path or not os.path.exists(speaker_wav_path):
|
| 505 |
+
msg = f"❌ Speaker audio not found: {speaker_wav_path}"
|
| 506 |
+
logger.error(msg)
|
| 507 |
+
return None, msg, msg
|
| 508 |
+
|
| 509 |
+
# # Truncate text based on max token assumption (~60 tokens)
|
| 510 |
+
# MAX_TTS_TOKENS = 60
|
| 511 |
+
# tokens = full_text.split() # crude token count
|
| 512 |
+
# if len(tokens) > MAX_TTS_TOKENS:
|
| 513 |
+
# logger.warning(f"⚠️ Text too long for TTS model ({len(tokens)} tokens). Truncating to {MAX_TTS_TOKENS} tokens.")
|
| 514 |
+
# full_text = " ".join(tokens[:MAX_TTS_TOKENS])
|
| 515 |
+
|
| 516 |
+
speed_tts = calibrated_speed(full_text, desired_duration)
|
| 517 |
+
tts.tts_to_file(
|
| 518 |
+
text=full_text,
|
| 519 |
+
speaker_wav=speaker_wav_path,
|
| 520 |
+
language=target_language,
|
| 521 |
+
file_path=output_audio_path,
|
| 522 |
+
speed=speed_tts,
|
| 523 |
+
split_sentences=True
|
| 524 |
+
)
|
| 525 |
+
|
| 526 |
+
if not os.path.exists(output_audio_path):
|
| 527 |
+
msg = f"❌ Voiceover file not generated at: {output_audio_path}"
|
| 528 |
+
logger.error(msg)
|
| 529 |
+
return None, msg, msg
|
| 530 |
+
|
| 531 |
+
msg = "✅ Voice cloning completed successfully."
|
| 532 |
+
logger.info(msg)
|
| 533 |
+
return output_audio_path, msg, None
|
| 534 |
+
|
| 535 |
+
except Exception as e:
|
| 536 |
+
err_msg = f"❌ An error occurred: {str(e)}"
|
| 537 |
+
logger.error("❌ Error during voice cloning:")
|
| 538 |
+
logger.error(traceback.format_exc())
|
| 539 |
+
return None, err_msg, err_msg
|
| 540 |
+
|
| 541 |
+
def calibrated_speed(text, desired_duration):
|
| 542 |
+
"""
|
| 543 |
+
Compute a speed factor to help TTS fit audio into desired duration,
|
| 544 |
+
using a simple truncated linear function of characters per second.
|
| 545 |
+
"""
|
| 546 |
+
char_count = len(text.strip())
|
| 547 |
+
if char_count == 0 or desired_duration <= 0:
|
| 548 |
+
return 1.0 # fallback
|
| 549 |
+
|
| 550 |
+
cps = char_count / desired_duration # characters per second
|
| 551 |
+
|
| 552 |
+
# Truncated linear mapping
|
| 553 |
+
if cps < 10:
|
| 554 |
+
return 1.0
|
| 555 |
+
elif cps > 25:
|
| 556 |
+
return 1.4
|
| 557 |
+
else:
|
| 558 |
+
# Linearly scale between cps 10 -> 25 and speed 1.0 -> 1.3
|
| 559 |
+
slope = (1.4 - 1.0) / (25 - 10)
|
| 560 |
+
return 1.0 + slope * (cps - 10)
|
| 561 |
+
|
| 562 |
+
|
| 563 |
+
def upload_and_manage(file, target_language, mode="transcription"):
|
| 564 |
+
if file is None:
|
| 565 |
+
logger.info("No file uploaded. Please upload a video/audio file.")
|
| 566 |
+
return None, [], None, "No file uploaded. Please upload a video/audio file."
|
| 567 |
+
|
| 568 |
+
try:
|
| 569 |
+
start_time = time.time() # Start the timer
|
| 570 |
+
logger.info(f"Started processing file: {file.name}")
|
| 571 |
+
|
| 572 |
+
# Define paths for audio and output files
|
| 573 |
+
audio_path = "audio.wav"
|
| 574 |
+
output_video_path = "output_video.mp4"
|
| 575 |
+
voiceover_path = "voiceover.wav"
|
| 576 |
+
logger.info(f"Using audio path: {audio_path}, output video path: {output_video_path}, voiceover path: {voiceover_path}")
|
| 577 |
+
|
| 578 |
+
# Step 1: Transcribe audio from uploaded media file and get timestamps
|
| 579 |
+
logger.info("Transcribing audio...")
|
| 580 |
+
transcription_json, source_language = transcribe_video_with_speakers(file.name)
|
| 581 |
+
logger.info(f"Transcription completed. Detected source language: {source_language}")
|
| 582 |
+
|
| 583 |
+
# Step 2: Translate the transcription
|
| 584 |
+
logger.info(f"Translating transcription from {source_language} to {target_language}...")
|
| 585 |
+
translated_json = translate_text(transcription_json, source_language, target_language)
|
| 586 |
+
logger.info(f"Translation completed. Number of translated segments: {len(translated_json)}")
|
| 587 |
+
|
| 588 |
+
# Step 3: Add transcript to video based on timestamps
|
| 589 |
+
logger.info("Adding translated transcript to video...")
|
| 590 |
+
add_transcript_voiceover(file.name, translated_json, output_video_path, mode == "Transcription with Voiceover", target_language)
|
| 591 |
+
logger.info(f"Transcript added to video. Output video saved at {output_video_path}")
|
| 592 |
+
|
| 593 |
+
# Convert translated JSON into a format for the editable table
|
| 594 |
+
logger.info("Converting translated JSON into editable table format...")
|
| 595 |
+
editable_table = [
|
| 596 |
+
[float(entry["start"]), entry["original"], entry["translated"], float(entry["end"]), entry["speaker"]]
|
| 597 |
+
for entry in translated_json
|
| 598 |
+
]
|
| 599 |
+
|
| 600 |
+
# Calculate elapsed time
|
| 601 |
+
elapsed_time = time.time() - start_time
|
| 602 |
+
elapsed_time_display = f"Processing completed in {elapsed_time:.2f} seconds."
|
| 603 |
+
logger.info(f"Processing completed in {elapsed_time:.2f} seconds.")
|
| 604 |
+
|
| 605 |
+
return translated_json, editable_table, output_video_path, elapsed_time_display
|
| 606 |
+
|
| 607 |
+
except Exception as e:
|
| 608 |
+
logger.error(f"An error occurred: {str(e)}")
|
| 609 |
+
return None, [], None, f"An error occurred: {str(e)}"
|
| 610 |
+
|
| 611 |
+
# Gradio Interface with Tabs
|
| 612 |
+
def build_interface():
|
| 613 |
+
with gr.Blocks(css=css) as demo:
|
| 614 |
+
gr.Markdown("## Video Localization")
|
| 615 |
+
with gr.Row():
|
| 616 |
+
with gr.Column(scale=4):
|
| 617 |
+
file_input = gr.File(label="Upload Video/Audio File")
|
| 618 |
+
language_input = gr.Dropdown(["en", "es", "fr", "zh"], label="Select Language") # Language codes
|
| 619 |
+
process_mode = gr.Radio(choices=["Transcription", "Transcription with Voiceover"], label="Choose Processing Type", value="Transcription")
|
| 620 |
+
submit_button = gr.Button("Post and Process")
|
| 621 |
+
editable_translations = gr.State(value=[])
|
| 622 |
+
|
| 623 |
+
with gr.Column(scale=8):
|
| 624 |
+
gr.Markdown("## Edit Translations")
|
| 625 |
|
| 626 |
+
# Editable JSON Data
|
| 627 |
+
editable_table = gr.Dataframe(
|
| 628 |
+
value=[], # Default to an empty list to avoid undefined values
|
| 629 |
+
headers=["start", "original", "translated", "end", "speaker"],
|
| 630 |
+
datatype=["number", "str", "str", "number", "str"],
|
| 631 |
+
row_count=1, # Initially empty
|
| 632 |
+
col_count=5,
|
| 633 |
+
interactive=[False, True, True, False, False], # Control editability
|
| 634 |
+
label="Edit Translations",
|
| 635 |
+
wrap=True # Enables text wrapping if supported
|
| 636 |
+
)
|
| 637 |
+
save_changes_button = gr.Button("Save Changes")
|
| 638 |
+
processed_video_output = gr.File(label="Download Processed Video", interactive=True) # Download button
|
| 639 |
+
elapsed_time_display = gr.Textbox(label="Elapsed Time", lines=1, interactive=False)
|
| 640 |
+
|
| 641 |
+
with gr.Column(scale=1):
|
| 642 |
+
gr.Markdown("**Feedback**")
|
| 643 |
+
feedback_input = gr.Textbox(
|
| 644 |
+
placeholder="Leave your feedback here...",
|
| 645 |
+
label=None,
|
| 646 |
+
lines=3,
|
| 647 |
+
)
|
| 648 |
+
feedback_btn = gr.Button("Submit Feedback")
|
| 649 |
+
response_message = gr.Textbox(label=None, lines=1, interactive=False)
|
| 650 |
+
db_download = gr.File(label="Download Database File", visible=False)
|
| 651 |
|
| 652 |
+
# Link the feedback handling
|
| 653 |
+
def feedback_submission(feedback):
|
| 654 |
+
message, file_path = handle_feedback(feedback)
|
| 655 |
+
if file_path:
|
| 656 |
+
return message, gr.update(value=file_path, visible=True)
|
| 657 |
+
return message, gr.update(visible=False)
|
| 658 |
+
|
| 659 |
+
save_changes_button.click(
|
| 660 |
+
update_translations,
|
| 661 |
+
inputs=[file_input, editable_table, process_mode],
|
| 662 |
+
outputs=[processed_video_output, elapsed_time_display]
|
| 663 |
+
)
|
| 664 |
+
|
| 665 |
+
submit_button.click(
|
| 666 |
+
upload_and_manage,
|
| 667 |
+
inputs=[file_input, language_input, process_mode],
|
| 668 |
+
outputs=[editable_translations, editable_table, processed_video_output, elapsed_time_display]
|
| 669 |
+
)
|
| 670 |
+
|
| 671 |
+
# Connect submit button to save_feedback_db function
|
| 672 |
+
feedback_btn.click(
|
| 673 |
+
feedback_submission,
|
| 674 |
+
inputs=[feedback_input],
|
| 675 |
+
outputs=[response_message, db_download]
|
| 676 |
+
)
|
| 677 |
+
|
| 678 |
+
return demo
|
| 679 |
+
|
| 680 |
+
# Launch the Gradio interface
|
| 681 |
+
demo = build_interface()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 682 |
demo.launch()
|