Update app.py
Browse files
app.py
CHANGED
@@ -61,620 +61,635 @@ client = OpenAI(
|
|
61 |
)
|
62 |
hf_api_key = os.environ.get("hf_token")
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
73 |
|
74 |
-
|
75 |
-
|
76 |
|
77 |
-
|
78 |
|
79 |
-
# Define the passcode
|
80 |
-
PASSCODE = "show_feedback_db"
|
81 |
-
|
82 |
-
css = """
|
83 |
-
/* Adjust row height */
|
84 |
-
.dataframe-container tr {
|
85 |
-
|
86 |
-
}
|
87 |
-
|
88 |
-
/* Ensure text wrapping and prevent overflow */
|
89 |
-
.dataframe-container td {
|
90 |
-
|
91 |
-
|
92 |
-
}
|
93 |
-
|
94 |
-
/* Set column widths */
|
95 |
-
[data-testid="block-container"] .scrolling-dataframe th:nth-child(1),
|
96 |
-
[data-testid="block-container"] .scrolling-dataframe td:nth-child(1) {
|
97 |
-
|
98 |
-
}
|
99 |
-
|
100 |
-
[data-testid="block-container"] .scrolling-dataframe th:nth-child(2),
|
101 |
-
[data-testid="block-container"] .scrolling-dataframe td:nth-child(2) {
|
102 |
-
|
103 |
-
}
|
104 |
-
|
105 |
-
[data-testid="block-container"] .scrolling-dataframe th:nth-child(3),
|
106 |
-
[data-testid="block-container"] .scrolling-dataframe td:nth-child(3) {
|
107 |
-
|
108 |
-
}
|
109 |
-
|
110 |
-
[data-testid="block-container"] .scrolling-dataframe th:nth-child(4),
|
111 |
-
[data-testid="block-container"] .scrolling-dataframe td:nth-child(4) {
|
112 |
-
|
113 |
-
}
|
114 |
-
"""
|
115 |
-
|
116 |
-
# Function to save feedback or provide access to the database file
|
117 |
-
def handle_feedback(feedback):
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
# Configure logging
|
135 |
-
logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s")
|
136 |
-
logger = logging.getLogger(__name__)
|
137 |
-
logger.info(f"MoviePy Version: {moviepy.__version__}")
|
138 |
-
|
139 |
-
# def segment_background_audio(audio_path, output_path="background_segments.wav"):
|
140 |
-
# # Step 2: Initialize pyannote voice activity detection pipeline (you need Hugging Face token)
|
141 |
-
# pipeline = Pipeline.from_pretrained(
|
142 |
-
# "pyannote/voice-activity-detection",
|
143 |
-
# use_auth_token=hf_api_key
|
144 |
-
# )
|
145 |
-
# # Step 3: Run VAD to get speech segments
|
146 |
-
# vad_result = pipeline(audio_path)
|
147 |
-
# print(f"Detected speech segments: {vad_result}")
|
148 |
-
|
149 |
-
# # Step 4: Load full audio and subtract speech segments
|
150 |
-
# full_audio = AudioSegment.from_wav(audio_path)
|
151 |
-
# background_audio = AudioSegment.silent(duration=len(full_audio))
|
152 |
-
|
153 |
-
# for segment in vad_result.itersegments():
|
154 |
-
# start_ms = int(segment.start * 1000)
|
155 |
-
# end_ms = int(segment.end * 1000)
|
156 |
-
# # Remove speech by muting that portion
|
157 |
-
# background_audio = background_audio.overlay(AudioSegment.silent(duration=end_ms - start_ms), position=start_ms)
|
158 |
-
|
159 |
-
# # Step 5: Subtract background_audio from full_audio
|
160 |
-
# result_audio = full_audio.overlay(background_audio)
|
161 |
-
|
162 |
-
# # Step 6: Export non-speech segments
|
163 |
-
# result_audio.export(output_path, format="wav")
|
164 |
-
# print(f"Saved non-speech (background) audio to: {output_path}")
|
165 |
-
|
166 |
-
# return True
|
167 |
-
|
168 |
-
def transcribe_video_with_speakers(video_path):
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
# Function to get the appropriate translation model based on target language
|
250 |
-
def get_translation_model(source_language, target_language):
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
def translate_single_entry(entry, translator):
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
def translate_text(transcription_json, source_language, target_language):
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
def update_translations(file, edited_table, mode):
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
def create_subtitle_clip_pil(text, start_time, end_time, video_width, video_height, font_path):
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
def process_entry(entry, i, video_width, video_height, add_voiceover, target_language, font_path, speaker_sample_paths=None):
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
|
438 |
-
def add_transcript_voiceover(video_path, translated_json, output_path, add_voiceover=False, target_language="en", speaker_sample_paths=None):
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
# Initialize TTS model only once (outside the function)
|
493 |
-
tts = TTS(model_name="tts_models/multilingual/multi-dataset/xtts_v2")
|
494 |
-
|
495 |
-
def generate_voiceover_clone(translated_json, desired_duration, target_language, speaker_wav_path, output_audio_path):
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
def calibrated_speed(text, desired_duration):
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
def upload_and_manage(file, target_language, mode="transcription"):
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
# Gradio Interface with Tabs
|
610 |
-
def build_interface():
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
|
624 |
-
|
625 |
-
|
626 |
-
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
# Launch the Gradio interface
|
679 |
-
demo = build_interface()
|
680 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
)
|
62 |
hf_api_key = os.environ.get("hf_token")
|
63 |
|
64 |
+
|
65 |
+
# def silence(duration, fps=44100):
|
66 |
+
# """
|
67 |
+
# Returns a silent AudioClip of the specified duration.
|
68 |
+
# """
|
69 |
+
# return AudioArrayClip(np.zeros((int(fps*duration), 2)), fps=fps)
|
70 |
+
|
71 |
+
# def count_words_or_characters(text):
|
72 |
+
# # Count non-Chinese words
|
73 |
+
# non_chinese_words = len(re.findall(r'\b[a-zA-Z0-9]+\b', text))
|
74 |
|
75 |
+
# # Count Chinese characters
|
76 |
+
# chinese_chars = len(re.findall(r'[\u4e00-\u9fff]', text))
|
77 |
|
78 |
+
# return non_chinese_words + chinese_chars
|
79 |
|
80 |
+
# # Define the passcode
|
81 |
+
# PASSCODE = "show_feedback_db"
|
82 |
+
|
83 |
+
# css = """
|
84 |
+
# /* Adjust row height */
|
85 |
+
# .dataframe-container tr {
|
86 |
+
# height: 50px !important;
|
87 |
+
# }
|
88 |
+
|
89 |
+
# /* Ensure text wrapping and prevent overflow */
|
90 |
+
# .dataframe-container td {
|
91 |
+
# white-space: normal !important;
|
92 |
+
# word-break: break-word !important;
|
93 |
+
# }
|
94 |
+
|
95 |
+
# /* Set column widths */
|
96 |
+
# [data-testid="block-container"] .scrolling-dataframe th:nth-child(1),
|
97 |
+
# [data-testid="block-container"] .scrolling-dataframe td:nth-child(1) {
|
98 |
+
# width: 6%; /* Start column */
|
99 |
+
# }
|
100 |
+
|
101 |
+
# [data-testid="block-container"] .scrolling-dataframe th:nth-child(2),
|
102 |
+
# [data-testid="block-container"] .scrolling-dataframe td:nth-child(2) {
|
103 |
+
# width: 47%; /* Original text */
|
104 |
+
# }
|
105 |
+
|
106 |
+
# [data-testid="block-container"] .scrolling-dataframe th:nth-child(3),
|
107 |
+
# [data-testid="block-container"] .scrolling-dataframe td:nth-child(3) {
|
108 |
+
# width: 47%; /* Translated text */
|
109 |
+
# }
|
110 |
+
|
111 |
+
# [data-testid="block-container"] .scrolling-dataframe th:nth-child(4),
|
112 |
+
# [data-testid="block-container"] .scrolling-dataframe td:nth-child(4) {
|
113 |
+
# display: none !important;
|
114 |
+
# }
|
115 |
+
# """
|
116 |
+
|
117 |
+
# # Function to save feedback or provide access to the database file
|
118 |
+
# def handle_feedback(feedback):
|
119 |
+
# feedback = feedback.strip() # Clean up leading/trailing whitespace
|
120 |
+
# if not feedback:
|
121 |
+
# return "Feedback cannot be empty.", None
|
122 |
+
|
123 |
+
# if feedback == PASSCODE:
|
124 |
+
# # Provide access to the feedback.db file
|
125 |
+
# return "Access granted! Download the database file below.", "feedback.db"
|
126 |
+
# else:
|
127 |
+
# # Save feedback to the database
|
128 |
+
# with sqlite3.connect("feedback.db") as conn:
|
129 |
+
# cursor = conn.cursor()
|
130 |
+
# cursor.execute("CREATE TABLE IF NOT EXISTS studio_feedback (id INTEGER PRIMARY KEY, comment TEXT)")
|
131 |
+
# cursor.execute("INSERT INTO studio_feedback (comment) VALUES (?)", (feedback,))
|
132 |
+
# conn.commit()
|
133 |
+
# return "Thank you for your feedback!", None
|
134 |
+
|
135 |
+
# # Configure logging
|
136 |
+
# logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s")
|
137 |
+
# logger = logging.getLogger(__name__)
|
138 |
+
# logger.info(f"MoviePy Version: {moviepy.__version__}")
|
139 |
+
|
140 |
+
# # def segment_background_audio(audio_path, output_path="background_segments.wav"):
|
141 |
+
# # # Step 2: Initialize pyannote voice activity detection pipeline (you need Hugging Face token)
|
142 |
+
# # pipeline = Pipeline.from_pretrained(
|
143 |
+
# # "pyannote/voice-activity-detection",
|
144 |
+
# # use_auth_token=hf_api_key
|
145 |
+
# # )
|
146 |
+
# # # Step 3: Run VAD to get speech segments
|
147 |
+
# # vad_result = pipeline(audio_path)
|
148 |
+
# # print(f"Detected speech segments: {vad_result}")
|
149 |
+
|
150 |
+
# # # Step 4: Load full audio and subtract speech segments
|
151 |
+
# # full_audio = AudioSegment.from_wav(audio_path)
|
152 |
+
# # background_audio = AudioSegment.silent(duration=len(full_audio))
|
153 |
+
|
154 |
+
# # for segment in vad_result.itersegments():
|
155 |
+
# # start_ms = int(segment.start * 1000)
|
156 |
+
# # end_ms = int(segment.end * 1000)
|
157 |
+
# # # Remove speech by muting that portion
|
158 |
+
# # background_audio = background_audio.overlay(AudioSegment.silent(duration=end_ms - start_ms), position=start_ms)
|
159 |
+
|
160 |
+
# # # Step 5: Subtract background_audio from full_audio
|
161 |
+
# # result_audio = full_audio.overlay(background_audio)
|
162 |
+
|
163 |
+
# # # Step 6: Export non-speech segments
|
164 |
+
# # result_audio.export(output_path, format="wav")
|
165 |
+
# # print(f"Saved non-speech (background) audio to: {output_path}")
|
166 |
+
|
167 |
+
# # return True
|
168 |
+
|
169 |
+
# def transcribe_video_with_speakers(video_path):
|
170 |
+
# # Extract audio from video
|
171 |
+
# video = VideoFileClip(video_path)
|
172 |
+
# audio_path = "audio.wav"
|
173 |
+
# video.audio.write_audiofile(audio_path)
|
174 |
+
# logger.info(f"Audio extracted from video: {audio_path}")
|
175 |
+
|
176 |
+
# # segment_result = segment_background_audio(audio_path)
|
177 |
+
# # print(f"Saved non-speech (background) audio to local")
|
178 |
|
179 |
+
# # Set up device
|
180 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
181 |
+
# logger.info(f"Using device: {device}")
|
182 |
|
183 |
+
# try:
|
184 |
+
# # Load a medium model with float32 for broader compatibility
|
185 |
+
# model = whisperx.load_model("medium", device=device, compute_type="float32")
|
186 |
+
# logger.info("WhisperX model loaded")
|
187 |
|
188 |
+
# # Transcribe
|
189 |
+
# result = model.transcribe(audio_path, chunk_size=5, print_progress = True)
|
190 |
+
# logger.info("Audio transcription completed")
|
191 |
+
|
192 |
+
# # Get the detected language
|
193 |
+
# detected_language = result["language"]
|
194 |
+
# logger.debug(f"Detected language: {detected_language}")
|
195 |
+
# # Alignment
|
196 |
+
# model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
|
197 |
+
# result = whisperx.align(result["segments"], model_a, metadata, audio_path, device)
|
198 |
+
# logger.info("Transcription alignment completed")
|
199 |
|
200 |
+
# # Diarization (works independently of Whisper model size)
|
201 |
+
# diarize_model = whisperx.DiarizationPipeline(use_auth_token=hf_api_key, device=device)
|
202 |
+
# diarize_segments = diarize_model(audio_path)
|
203 |
+
# logger.info("Speaker diarization completed")
|
204 |
|
205 |
+
# # Assign speakers
|
206 |
+
# result = whisperx.assign_word_speakers(diarize_segments, result)
|
207 |
+
# logger.info("Speakers assigned to transcribed segments")
|
208 |
|
209 |
+
# except Exception as e:
|
210 |
+
# logger.error(f"❌ WhisperX pipeline failed: {e}")
|
211 |
+
|
212 |
+
# # Extract timestamps, text, and speaker IDs
|
213 |
+
# transcript_with_speakers = [
|
214 |
+
# {
|
215 |
+
# "start": segment["start"],
|
216 |
+
# "end": segment["end"],
|
217 |
+
# "text": segment["text"],
|
218 |
+
# "speaker": segment["speaker"]
|
219 |
+
# }
|
220 |
+
# for segment in result["segments"]
|
221 |
+
# ]
|
222 |
+
|
223 |
+
# # Collect audio for each speaker
|
224 |
+
# speaker_audio = {}
|
225 |
+
# for segment in result["segments"]:
|
226 |
+
# speaker = segment["speaker"]
|
227 |
+
# if speaker not in speaker_audio:
|
228 |
+
# speaker_audio[speaker] = []
|
229 |
+
# speaker_audio[speaker].append((segment["start"], segment["end"]))
|
230 |
+
|
231 |
+
# # Collapse and truncate speaker audio
|
232 |
+
# speaker_sample_paths = {}
|
233 |
+
# audio_clip = AudioFileClip(audio_path)
|
234 |
+
# for speaker, segments in speaker_audio.items():
|
235 |
+
# speaker_clips = [audio_clip.subclip(start, end) for start, end in segments]
|
236 |
+
# combined_clip = concatenate_audioclips(speaker_clips)
|
237 |
+
# truncated_clip = combined_clip.subclip(0, min(30, combined_clip.duration))
|
238 |
+
# sample_path = f"speaker_{speaker}_sample.wav"
|
239 |
+
# truncated_clip.write_audiofile(sample_path)
|
240 |
+
# speaker_sample_paths[speaker] = sample_path
|
241 |
+
# logger.info(f"Created sample for {speaker}: {sample_path}")
|
242 |
+
|
243 |
+
# # Clean up
|
244 |
+
# video.close()
|
245 |
+
# audio_clip.close()
|
246 |
+
# os.remove(audio_path)
|
247 |
+
|
248 |
+
# return transcript_with_speakers, detected_language
|
249 |
+
|
250 |
+
# # Function to get the appropriate translation model based on target language
|
251 |
+
# def get_translation_model(source_language, target_language):
|
252 |
+
# """
|
253 |
+
# Get the translation model based on the source and target language.
|
254 |
+
|
255 |
+
# Parameters:
|
256 |
+
# - target_language (str): The language to translate the content into (e.g., 'es', 'fr').
|
257 |
+
# - source_language (str): The language of the input content (default is 'en' for English).
|
258 |
|
259 |
+
# Returns:
|
260 |
+
# - str: The translation model identifier.
|
261 |
+
# """
|
262 |
+
# # List of allowable languages
|
263 |
+
# allowable_languages = ["en", "es", "fr", "zh", "de", "it", "pt", "ja", "ko", "ru"]
|
264 |
+
|
265 |
+
# # Validate source and target languages
|
266 |
+
# if source_language not in allowable_languages:
|
267 |
+
# logger.debug(f"Invalid source language '{source_language}'. Supported languages are: {', '.join(allowable_languages)}")
|
268 |
+
# # Return a default model if source language is invalid
|
269 |
+
# source_language = "en" # Default to 'en'
|
270 |
+
|
271 |
+
# if target_language not in allowable_languages:
|
272 |
+
# logger.debug(f"Invalid target language '{target_language}'. Supported languages are: {', '.join(allowable_languages)}")
|
273 |
+
# # Return a default model if target language is invalid
|
274 |
+
# target_language = "zh" # Default to 'zh'
|
275 |
+
|
276 |
+
# if source_language == target_language:
|
277 |
+
# source_language = "en" # Default to 'en'
|
278 |
+
# target_language = "zh" # Default to 'zh'
|
279 |
+
|
280 |
+
# # Return the model using string concatenation
|
281 |
+
# return f"Helsinki-NLP/opus-mt-{source_language}-{target_language}"
|
282 |
+
|
283 |
+
# def translate_single_entry(entry, translator):
|
284 |
+
# original_text = entry["text"]
|
285 |
+
# translated_text = translator(original_text)[0]['translation_text']
|
286 |
+
# return {
|
287 |
+
# "start": entry["start"],
|
288 |
+
# "original": original_text,
|
289 |
+
# "translated": translated_text,
|
290 |
+
# "end": entry["end"],
|
291 |
+
# "speaker": entry["speaker"]
|
292 |
+
# }
|
293 |
+
|
294 |
+
# def translate_text(transcription_json, source_language, target_language):
|
295 |
+
# # Load the translation model for the specified target language
|
296 |
+
# translation_model_id = get_translation_model(source_language, target_language)
|
297 |
+
# logger.debug(f"Translation model: {translation_model_id}")
|
298 |
+
# translator = pipeline("translation", model=translation_model_id)
|
299 |
+
|
300 |
+
# # Use ThreadPoolExecutor to parallelize translations
|
301 |
+
# with concurrent.futures.ThreadPoolExecutor() as executor:
|
302 |
+
# # Submit all translation tasks and collect results
|
303 |
+
# translate_func = lambda entry: translate_single_entry(entry, translator)
|
304 |
+
# translated_json = list(executor.map(translate_func, transcription_json))
|
305 |
+
|
306 |
+
# # Sort the translated_json by start time
|
307 |
+
# translated_json.sort(key=lambda x: x["start"])
|
308 |
+
|
309 |
+
# # Log the components being added to translated_json
|
310 |
+
# for entry in translated_json:
|
311 |
+
# logger.debug("Added to translated_json: start=%s, original=%s, translated=%s, end=%s, speaker=%s",
|
312 |
+
# entry["start"], entry["original"], entry["translated"], entry["end"], entry["speaker"])
|
313 |
+
|
314 |
+
# return translated_json
|
315 |
+
|
316 |
+
# def update_translations(file, edited_table, mode):
|
317 |
+
# """
|
318 |
+
# Update the translations based on user edits in the Gradio Dataframe.
|
319 |
+
# """
|
320 |
+
# output_video_path = "output_video.mp4"
|
321 |
+
# logger.debug(f"Editable Table: {edited_table}")
|
322 |
+
|
323 |
+
# if file is None:
|
324 |
+
# logger.info("No file uploaded. Please upload a video/audio file.")
|
325 |
+
# return None, [], None, "No file uploaded. Please upload a video/audio file."
|
326 |
|
327 |
+
# try:
|
328 |
+
# start_time = time.time() # Start the timer
|
329 |
+
|
330 |
+
# # Convert the edited_table (list of lists) back to list of dictionaries
|
331 |
+
# updated_translations = [
|
332 |
+
# {
|
333 |
+
# "start": row["start"], # Access by column name
|
334 |
+
# "original": row["original"],
|
335 |
+
# "translated": row["translated"],
|
336 |
+
# "end": row["end"]
|
337 |
+
# }
|
338 |
+
# for _, row in edited_table.iterrows()
|
339 |
+
# ]
|
340 |
+
|
341 |
+
# # Call the function to process the video with updated translations
|
342 |
+
# add_transcript_voiceover(file.name, updated_translations, output_video_path, mode=="Transcription with Voiceover")
|
343 |
+
|
344 |
+
# # Calculate elapsed time
|
345 |
+
# elapsed_time = time.time() - start_time
|
346 |
+
# elapsed_time_display = f"Updates applied successfully in {elapsed_time:.2f} seconds."
|
347 |
+
|
348 |
+
# return output_video_path, elapsed_time_display
|
349 |
+
|
350 |
+
# except Exception as e:
|
351 |
+
# raise ValueError(f"Error updating translations: {e}")
|
352 |
+
|
353 |
+
# def create_subtitle_clip_pil(text, start_time, end_time, video_width, video_height, font_path):
|
354 |
+
# try:
|
355 |
+
# subtitle_width = int(video_width * 0.8)
|
356 |
+
# subtitle_font_size = int(video_height // 20)
|
357 |
+
# font = ImageFont.truetype(font_path, subtitle_font_size)
|
358 |
+
|
359 |
+
# dummy_img = Image.new("RGBA", (subtitle_width, 1), (0, 0, 0, 0))
|
360 |
+
# draw = ImageDraw.Draw(dummy_img)
|
361 |
+
|
362 |
+
# lines = []
|
363 |
+
# line = ""
|
364 |
+
# for word in text.split():
|
365 |
+
# test_line = f"{line} {word}".strip()
|
366 |
+
# bbox = draw.textbbox((0, 0), test_line, font=font)
|
367 |
+
# w = bbox[2] - bbox[0]
|
368 |
+
# if w <= subtitle_width - 10:
|
369 |
+
# line = test_line
|
370 |
+
# else:
|
371 |
+
# lines.append(line)
|
372 |
+
# line = word
|
373 |
+
# lines.append(line)
|
374 |
+
|
375 |
+
# line_heights = [draw.textbbox((0, 0), l, font=font)[3] - draw.textbbox((0, 0), l, font=font)[1] for l in lines]
|
376 |
+
# total_height = sum(line_heights) + (len(lines) - 1) * 5
|
377 |
+
# img = Image.new("RGBA", (subtitle_width, total_height), (0, 0, 0, 0))
|
378 |
+
# draw = ImageDraw.Draw(img)
|
379 |
+
|
380 |
+
# y = 0
|
381 |
+
# for idx, line in enumerate(lines):
|
382 |
+
# bbox = draw.textbbox((0, 0), line, font=font)
|
383 |
+
# w = bbox[2] - bbox[0]
|
384 |
+
# draw.text(((subtitle_width - w) // 2, y), line, font=font, fill="yellow")
|
385 |
+
# y += line_heights[idx] + 5
|
386 |
|
387 |
+
# img_np = np.array(img) # <- ✅ Fix: convert to NumPy
|
388 |
+
# txt_clip = ImageClip(img_np).set_start(start_time).set_duration(end_time - start_time).set_position("bottom").set_opacity(0.8)
|
389 |
+
# return txt_clip
|
390 |
+
# except Exception as e:
|
391 |
+
# logger.error(f"\u274c Failed to create subtitle clip: {e}")
|
392 |
+
# return None
|
393 |
+
|
394 |
+
# def process_entry(entry, i, video_width, video_height, add_voiceover, target_language, font_path, speaker_sample_paths=None):
|
395 |
+
# logger.debug(f"Processing entry {i}: {entry}")
|
396 |
+
# error_message = None
|
397 |
+
|
398 |
+
# try:
|
399 |
+
# txt_clip = create_subtitle_clip_pil(entry["translated"], entry["start"], entry["end"], video_width, video_height, font_path)
|
400 |
+
# except Exception as e:
|
401 |
+
# error_message = f"❌ Failed to create subtitle clip for entry {i}: {e}"
|
402 |
+
# logger.error(error_message)
|
403 |
+
# txt_clip = None
|
404 |
+
|
405 |
+
# audio_segment = None
|
406 |
+
# if add_voiceover:
|
407 |
+
# try:
|
408 |
+
# segment_audio_path = f"segment_{i}_voiceover.wav"
|
409 |
+
# desired_duration = entry["end"] - entry["start"]
|
410 |
+
# speaker = entry.get("speaker", "default")
|
411 |
+
# speaker_wav_path = f"speaker_{speaker}_sample.wav"
|
412 |
+
|
413 |
+
# output_path, status_msg, tts_error = generate_voiceover_clone([entry], desired_duration, target_language, speaker_wav_path, segment_audio_path)
|
414 |
+
|
415 |
+
# if tts_error:
|
416 |
+
# error_message = error_message + " | " + tts_error if error_message else tts_error
|
417 |
+
|
418 |
+
# if not output_path or not os.path.exists(segment_audio_path):
|
419 |
+
# raise FileNotFoundError(f"Voiceover file not generated at: {segment_audio_path}")
|
420 |
+
|
421 |
+
# audio_clip = AudioFileClip(segment_audio_path)
|
422 |
+
# logger.debug(f"Audio clip duration: {audio_clip.duration}, Desired duration: {desired_duration}")
|
423 |
+
|
424 |
+
# if audio_clip.duration < desired_duration:
|
425 |
+
# silence_duration = desired_duration - audio_clip.duration
|
426 |
+
# audio_clip = concatenate_audioclips([audio_clip, silence(duration=silence_duration)])
|
427 |
+
# logger.info(f"Padded audio with {silence_duration} seconds of silence.")
|
428 |
+
|
429 |
+
# audio_segment = audio_clip.set_start(entry["start"]).set_duration(desired_duration)
|
430 |
+
|
431 |
+
# except Exception as e:
|
432 |
+
# err = f"❌ Failed to generate audio segment for entry {i}: {e}"
|
433 |
+
# logger.error(err)
|
434 |
+
# error_message = error_message + " | " + err if error_message else err
|
435 |
+
# audio_segment = None
|
436 |
+
|
437 |
+
# return i, txt_clip, audio_segment, error_message
|
438 |
|
439 |
+
# def add_transcript_voiceover(video_path, translated_json, output_path, add_voiceover=False, target_language="en", speaker_sample_paths=None):
|
440 |
+
# video = VideoFileClip(video_path)
|
441 |
+
# font_path = "./NotoSansSC-Regular.ttf"
|
442 |
+
|
443 |
+
# text_clips = []
|
444 |
+
# audio_segments = []
|
445 |
+
# error_messages = []
|
446 |
+
|
447 |
+
# with concurrent.futures.ThreadPoolExecutor() as executor:
|
448 |
+
# futures = [executor.submit(process_entry, entry, i, video.w, video.h, add_voiceover, target_language, font_path, speaker_sample_paths)
|
449 |
+
# for i, entry in enumerate(translated_json)]
|
450 |
+
|
451 |
+
# results = []
|
452 |
+
# for future in concurrent.futures.as_completed(futures):
|
453 |
+
# try:
|
454 |
+
# i, txt_clip, audio_segment, error = future.result()
|
455 |
+
# results.append((i, txt_clip, audio_segment))
|
456 |
+
# if error:
|
457 |
+
# error_messages.append(f"[Entry {i}] {error}")
|
458 |
+
# except Exception as e:
|
459 |
+
# err = f"❌ Unexpected error in future result: {e}"
|
460 |
+
# logger.error(err)
|
461 |
+
# error_messages.append(err)
|
462 |
+
|
463 |
+
# # Sort by entry index to ensure order
|
464 |
+
# results.sort(key=lambda x: x[0])
|
465 |
+
# text_clips = [clip for _, clip, _ in results if clip]
|
466 |
+
# if add_voiceover:
|
467 |
+
# audio_segments = [segment for _, _, segment in results if segment]
|
468 |
+
|
469 |
+
# final_video = CompositeVideoClip([video] + text_clips)
|
470 |
+
|
471 |
+
# if add_voiceover:
|
472 |
+
# if audio_segments:
|
473 |
+
# final_audio = CompositeAudioClip(audio_segments).set_duration(video.duration)
|
474 |
+
# final_video = final_video.set_audio(final_audio)
|
475 |
+
# else:
|
476 |
+
# logger.warning("⚠️ No audio segments available. Adding silent fallback.")
|
477 |
+
# silent_audio = AudioClip(lambda t: 0, duration=video.duration)
|
478 |
+
# final_video = final_video.set_audio(silent_audio)
|
479 |
+
|
480 |
+
# logger.info(f"Saving the final video to: {output_path}")
|
481 |
+
# final_video.write_videofile(output_path, codec="libx264", audio_codec="aac")
|
482 |
+
|
483 |
+
# logger.info("Video processing completed successfully.")
|
484 |
+
|
485 |
+
# # Optional: return errors
|
486 |
+
# if error_messages:
|
487 |
+
# logger.warning("⚠️ Errors encountered during processing:")
|
488 |
+
# for msg in error_messages:
|
489 |
+
# logger.warning(msg)
|
490 |
+
|
491 |
+
# return error_messages
|
492 |
+
|
493 |
+
# # Initialize TTS model only once (outside the function)
|
494 |
+
# tts = TTS(model_name="tts_models/multilingual/multi-dataset/xtts_v2")
|
495 |
+
|
496 |
+
# def generate_voiceover_clone(translated_json, desired_duration, target_language, speaker_wav_path, output_audio_path):
|
497 |
+
# try:
|
498 |
+
# full_text = " ".join(entry["translated"] for entry in translated_json if "translated" in entry and entry["translated"].strip())
|
499 |
+
# if not full_text.strip():
|
500 |
+
# msg = "❌ Translated text is empty."
|
501 |
+
# logger.error(msg)
|
502 |
+
# return None, msg, msg
|
503 |
+
|
504 |
+
# if not speaker_wav_path or not os.path.exists(speaker_wav_path):
|
505 |
+
# msg = f"❌ Speaker audio not found: {speaker_wav_path}"
|
506 |
+
# logger.error(msg)
|
507 |
+
# return None, msg, msg
|
508 |
+
|
509 |
+
# # # Truncate text based on max token assumption (~60 tokens)
|
510 |
+
# # MAX_TTS_TOKENS = 60
|
511 |
+
# # tokens = full_text.split() # crude token count
|
512 |
+
# # if len(tokens) > MAX_TTS_TOKENS:
|
513 |
+
# # logger.warning(f"⚠️ Text too long for TTS model ({len(tokens)} tokens). Truncating to {MAX_TTS_TOKENS} tokens.")
|
514 |
+
# # full_text = " ".join(tokens[:MAX_TTS_TOKENS])
|
515 |
+
|
516 |
+
# speed_tts = calibrated_speed(full_text, desired_duration)
|
517 |
+
# tts.tts_to_file(
|
518 |
+
# text=full_text,
|
519 |
+
# speaker_wav=speaker_wav_path,
|
520 |
+
# language=target_language,
|
521 |
+
# file_path=output_audio_path,
|
522 |
+
# speed=speed_tts,
|
523 |
+
# split_sentences=True
|
524 |
+
# )
|
525 |
+
|
526 |
+
# if not os.path.exists(output_audio_path):
|
527 |
+
# msg = f"❌ Voiceover file not generated at: {output_audio_path}"
|
528 |
+
# logger.error(msg)
|
529 |
+
# return None, msg, msg
|
530 |
+
|
531 |
+
# msg = "✅ Voice cloning completed successfully."
|
532 |
+
# logger.info(msg)
|
533 |
+
# return output_audio_path, msg, None
|
534 |
+
|
535 |
+
# except Exception as e:
|
536 |
+
# err_msg = f"❌ An error occurred: {str(e)}"
|
537 |
+
# logger.error("❌ Error during voice cloning:")
|
538 |
+
# logger.error(traceback.format_exc())
|
539 |
+
# return None, err_msg, err_msg
|
540 |
+
|
541 |
+
# def calibrated_speed(text, desired_duration):
|
542 |
+
# """
|
543 |
+
# Compute a speed factor to help TTS fit audio into desired duration,
|
544 |
+
# using a simple truncated linear function of characters per second.
|
545 |
+
# """
|
546 |
+
# char_count = len(text.strip())
|
547 |
+
# if char_count == 0 or desired_duration <= 0:
|
548 |
+
# return 1.0 # fallback
|
549 |
+
|
550 |
+
# cps = char_count / desired_duration # characters per second
|
551 |
+
|
552 |
+
# # Truncated linear mapping
|
553 |
+
# if cps < 10:
|
554 |
+
# return 1.0
|
555 |
+
# elif cps > 25:
|
556 |
+
# return 1.4
|
557 |
+
# else:
|
558 |
+
# # Linearly scale between cps 10 -> 25 and speed 1.0 -> 1.3
|
559 |
+
# slope = (1.4 - 1.0) / (25 - 10)
|
560 |
+
# return 1.0 + slope * (cps - 10)
|
561 |
+
|
562 |
+
|
563 |
+
# def upload_and_manage(file, target_language, mode="transcription"):
|
564 |
+
# if file is None:
|
565 |
+
# logger.info("No file uploaded. Please upload a video/audio file.")
|
566 |
+
# return None, [], None, "No file uploaded. Please upload a video/audio file."
|
567 |
+
|
568 |
+
# try:
|
569 |
+
# start_time = time.time() # Start the timer
|
570 |
+
# logger.info(f"Started processing file: {file.name}")
|
571 |
+
|
572 |
+
# # Define paths for audio and output files
|
573 |
+
# audio_path = "audio.wav"
|
574 |
+
# output_video_path = "output_video.mp4"
|
575 |
+
# voiceover_path = "voiceover.wav"
|
576 |
+
# logger.info(f"Using audio path: {audio_path}, output video path: {output_video_path}, voiceover path: {voiceover_path}")
|
577 |
+
|
578 |
+
# # Step 1: Transcribe audio from uploaded media file and get timestamps
|
579 |
+
# logger.info("Transcribing audio...")
|
580 |
+
# transcription_json, source_language = transcribe_video_with_speakers(file.name)
|
581 |
+
# logger.info(f"Transcription completed. Detected source language: {source_language}")
|
582 |
+
|
583 |
+
# # Step 2: Translate the transcription
|
584 |
+
# logger.info(f"Translating transcription from {source_language} to {target_language}...")
|
585 |
+
# translated_json = translate_text(transcription_json, source_language, target_language)
|
586 |
+
# logger.info(f"Translation completed. Number of translated segments: {len(translated_json)}")
|
587 |
+
|
588 |
+
# # Step 3: Add transcript to video based on timestamps
|
589 |
+
# logger.info("Adding translated transcript to video...")
|
590 |
+
# add_transcript_voiceover(file.name, translated_json, output_video_path, mode == "Transcription with Voiceover", target_language)
|
591 |
+
# logger.info(f"Transcript added to video. Output video saved at {output_video_path}")
|
592 |
+
|
593 |
+
# # Convert translated JSON into a format for the editable table
|
594 |
+
# logger.info("Converting translated JSON into editable table format...")
|
595 |
+
# editable_table = [
|
596 |
+
# [float(entry["start"]), entry["original"], entry["translated"], float(entry["end"]), entry["speaker"]]
|
597 |
+
# for entry in translated_json
|
598 |
+
# ]
|
599 |
+
|
600 |
+
# # Calculate elapsed time
|
601 |
+
# elapsed_time = time.time() - start_time
|
602 |
+
# elapsed_time_display = f"Processing completed in {elapsed_time:.2f} seconds."
|
603 |
+
# logger.info(f"Processing completed in {elapsed_time:.2f} seconds.")
|
604 |
+
|
605 |
+
# return translated_json, editable_table, output_video_path, elapsed_time_display
|
606 |
+
|
607 |
+
# except Exception as e:
|
608 |
+
# logger.error(f"An error occurred: {str(e)}")
|
609 |
+
# return None, [], None, f"An error occurred: {str(e)}"
|
610 |
+
# # Gradio Interface with Tabs
|
611 |
+
# def build_interface():
|
612 |
+
# with gr.Blocks(css=css) as demo:
|
613 |
+
# gr.Markdown("## Video Localization")
|
614 |
+
# with gr.Row():
|
615 |
+
# with gr.Column(scale=4):
|
616 |
+
# file_input = gr.File(label="Upload Video/Audio File")
|
617 |
+
# language_input = gr.Dropdown(["en", "es", "fr", "zh"], label="Select Language") # Language codes
|
618 |
+
# process_mode = gr.Radio(choices=["Transcription", "Transcription with Voiceover"], label="Choose Processing Type", value="Transcription")
|
619 |
+
# submit_button = gr.Button("Post and Process")
|
620 |
+
# editable_translations = gr.State(value=[])
|
621 |
+
|
622 |
+
# with gr.Column(scale=8):
|
623 |
+
# gr.Markdown("## Edit Translations")
|
624 |
|
625 |
+
# # Editable JSON Data
|
626 |
+
# editable_table = gr.Dataframe(
|
627 |
+
# value=[], # Default to an empty list to avoid undefined values
|
628 |
+
# headers=["start", "original", "translated", "end", "speaker"],
|
629 |
+
# datatype=["number", "str", "str", "number", "str"],
|
630 |
+
# row_count=1, # Initially empty
|
631 |
+
# col_count=5,
|
632 |
+
# interactive=[False, True, True, False, False], # Control editability
|
633 |
+
# label="Edit Translations",
|
634 |
+
# wrap=True # Enables text wrapping if supported
|
635 |
+
# )
|
636 |
+
# save_changes_button = gr.Button("Save Changes")
|
637 |
+
# processed_video_output = gr.File(label="Download Processed Video", interactive=True) # Download button
|
638 |
+
# elapsed_time_display = gr.Textbox(label="Elapsed Time", lines=1, interactive=False)
|
639 |
+
|
640 |
+
# with gr.Column(scale=1):
|
641 |
+
# gr.Markdown("**Feedback**")
|
642 |
+
# feedback_input = gr.Textbox(
|
643 |
+
# placeholder="Leave your feedback here...",
|
644 |
+
# label=None,
|
645 |
+
# lines=3,
|
646 |
+
# )
|
647 |
+
# feedback_btn = gr.Button("Submit Feedback")
|
648 |
+
# response_message = gr.Textbox(label=None, lines=1, interactive=False)
|
649 |
+
# db_download = gr.File(label="Download Database File", visible=False)
|
650 |
|
651 |
+
# # Link the feedback handling
|
652 |
+
# def feedback_submission(feedback):
|
653 |
+
# message, file_path = handle_feedback(feedback)
|
654 |
+
# if file_path:
|
655 |
+
# return message, gr.update(value=file_path, visible=True)
|
656 |
+
# return message, gr.update(visible=False)
|
657 |
+
|
658 |
+
# save_changes_button.click(
|
659 |
+
# update_translations,
|
660 |
+
# inputs=[file_input, editable_table, process_mode],
|
661 |
+
# outputs=[processed_video_output, elapsed_time_display]
|
662 |
+
# )
|
663 |
+
|
664 |
+
# submit_button.click(
|
665 |
+
# upload_and_manage,
|
666 |
+
# inputs=[file_input, language_input, process_mode],
|
667 |
+
# outputs=[editable_translations, editable_table, processed_video_output, elapsed_time_display]
|
668 |
+
# )
|
669 |
+
|
670 |
+
# # Connect submit button to save_feedback_db function
|
671 |
+
# feedback_btn.click(
|
672 |
+
# feedback_submission,
|
673 |
+
# inputs=[feedback_input],
|
674 |
+
# outputs=[response_message, db_download]
|
675 |
+
# )
|
676 |
+
|
677 |
+
# return demo
|
678 |
+
|
679 |
+
# # Launch the Gradio interface
|
680 |
+
# demo = build_interface()
|
681 |
+
# demo.launch()
|
682 |
+
|
683 |
+
import gradio as gr
|
684 |
+
|
685 |
+
def dummy_func(x):
|
686 |
+
return x, "Success"
|
687 |
+
|
688 |
+
with gr.Blocks() as demo:
|
689 |
+
inp = gr.Textbox()
|
690 |
+
out1 = gr.Textbox()
|
691 |
+
out2 = gr.Textbox()
|
692 |
+
btn = gr.Button("Run")
|
693 |
+
btn.click(dummy_func, inputs=inp, outputs=[out1, out2])
|
694 |
+
|
695 |
+
demo.launch()
|