studio_V1 / app.py
qqwjq1981's picture
Update app.py
14d19ae verified
raw
history blame
22.8 kB
import numpy as np
import re
import concurrent.futures
import gradio as gr
from datetime import datetime
import random
import moviepy
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
from moviepy.editor import (
VideoFileClip,
TextClip,
CompositeVideoClip,
CompositeAudioClip,
AudioFileClip,
concatenate_videoclips,
concatenate_audioclips
)
from moviepy.audio.AudioClip import AudioArrayClip
import subprocess
import speech_recognition as sr
import json
from nltk.tokenize import sent_tokenize
import logging
from textblob import TextBlob
import whisperx
import time
import os
import openai
from openai import OpenAI
import traceback
from TTS.api import TTS
import torch
from TTS.tts.configs.xtts_config import XttsConfig
# Accept license terms for Coqui XTTS
os.environ["COQUI_TOS_AGREED"] = "1"
torch.serialization.add_safe_globals([XttsConfig])
# Load XTTS model
try:
print("πŸ”„ Loading XTTS model...")
tts = TTS(model_name="tts_models/multilingual/multi-dataset/xtts_v2")
print("βœ… XTTS model loaded successfully.")
except Exception as e:
print("❌ Error loading XTTS model:")
traceback.print_exc()
raise e
client = OpenAI(
api_key= os.environ.get("openAI_api_key"), # This is the default and can be omitted
)
hf_api_key = os.environ.get("hf_token")
def silence(duration, fps=44100):
"""
Returns a silent AudioClip of the specified duration.
"""
return AudioArrayClip(np.zeros((int(fps*duration), 2)), fps=fps)
def count_words_or_characters(text):
# Count non-Chinese words
non_chinese_words = len(re.findall(r'\b[a-zA-Z0-9]+\b', text))
# Count Chinese characters
chinese_chars = len(re.findall(r'[\u4e00-\u9fff]', text))
return non_chinese_words + chinese_chars
# Define the passcode
PASSCODE = "show_feedback_db"
css = """
/* Adjust row height */
.dataframe-container tr {
height: 50px !important;
}
/* Ensure text wrapping and prevent overflow */
.dataframe-container td {
white-space: normal !important;
word-break: break-word !important;
}
/* Set column widths */
[data-testid="block-container"] .scrolling-dataframe th:nth-child(1),
[data-testid="block-container"] .scrolling-dataframe td:nth-child(1) {
width: 6%; /* Start column */
}
[data-testid="block-container"] .scrolling-dataframe th:nth-child(2),
[data-testid="block-container"] .scrolling-dataframe td:nth-child(2) {
width: 47%; /* Original text */
}
[data-testid="block-container"] .scrolling-dataframe th:nth-child(3),
[data-testid="block-container"] .scrolling-dataframe td:nth-child(3) {
width: 47%; /* Translated text */
}
[data-testid="block-container"] .scrolling-dataframe th:nth-child(4),
[data-testid="block-container"] .scrolling-dataframe td:nth-child(4) {
display: none !important;
}
"""
# Function to save feedback or provide access to the database file
def handle_feedback(feedback):
feedback = feedback.strip() # Clean up leading/trailing whitespace
if not feedback:
return "Feedback cannot be empty.", None
if feedback == PASSCODE:
# Provide access to the feedback.db file
return "Access granted! Download the database file below.", "feedback.db"
else:
# Save feedback to the database
with sqlite3.connect("feedback.db") as conn:
cursor = conn.cursor()
cursor.execute("CREATE TABLE IF NOT EXISTS studio_feedback (id INTEGER PRIMARY KEY, comment TEXT)")
cursor.execute("INSERT INTO studio_feedback (comment) VALUES (?)", (feedback,))
conn.commit()
return "Thank you for your feedback!", None
# Configure logging
logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
logger.info(f"MoviePy Version: {moviepy.__version__}")
def transcribe_video_with_speakers(video_path):
# Extract audio from video
video = VideoFileClip(video_path)
audio_path = "audio.wav"
video.audio.write_audiofile(audio_path)
logger.info(f"Audio extracted from video: {audio_path}")
# Set up device
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device}")
try:
# Load a medium model with float32 for broader compatibility
model = whisperx.load_model("medium", device=device, compute_type="float32")
logger.info("WhisperX model loaded")
# Transcribe
result = model.transcribe(audio_path)
logger.info("Audio transcription completed")
# Get the detected language
detected_language = result["language"]
logger.debug(f"Detected language: {detected_language}")
# Alignment
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
result = whisperx.align(result["segments"], model_a, metadata, audio_path, device)
logger.info("Transcription alignment completed")
# Diarization (works independently of Whisper model size)
diarize_model = whisperx.DiarizationPipeline(use_auth_token=hf_api_key, device=device)
diarize_segments = diarize_model(audio_path)
logger.info("Speaker diarization completed")
# Assign speakers
result = whisperx.assign_word_speakers(diarize_segments, result)
logger.info("Speakers assigned to transcribed segments")
except Exception as e:
logger.error(f"❌ WhisperX pipeline failed: {e}")
# Extract timestamps, text, and speaker IDs
transcript_with_speakers = [
{
"start": segment["start"],
"end": segment["end"],
"text": segment["text"],
"speaker": segment["speaker"]
}
for segment in result["segments"]
]
# Collect audio for each speaker
speaker_audio = {}
for segment in result["segments"]:
speaker = segment["speaker"]
if speaker not in speaker_audio:
speaker_audio[speaker] = []
speaker_audio[speaker].append((segment["start"], segment["end"]))
# Collapse and truncate speaker audio
speaker_sample_paths = {}
audio_clip = AudioFileClip(audio_path)
for speaker, segments in speaker_audio.items():
speaker_clips = [audio_clip.subclip(start, end) for start, end in segments]
combined_clip = concatenate_audioclips(speaker_clips)
truncated_clip = combined_clip.subclip(0, min(30, combined_clip.duration))
sample_path = f"speaker_{speaker}_sample.wav"
truncated_clip.write_audiofile(sample_path)
speaker_sample_paths[speaker] = sample_path
logger.info(f"Created sample for {speaker}: {sample_path}")
# Clean up
video.close()
audio_clip.close()
os.remove(audio_path)
return transcript_with_speakers, detected_language
# Function to get the appropriate translation model based on target language
def get_translation_model(source_language, target_language):
"""
Get the translation model based on the source and target language.
Parameters:
- target_language (str): The language to translate the content into (e.g., 'es', 'fr').
- source_language (str): The language of the input content (default is 'en' for English).
Returns:
- str: The translation model identifier.
"""
# List of allowable languages
allowable_languages = ["en", "es", "fr", "zh", "de", "it", "pt", "ja", "ko", "ru"]
# Validate source and target languages
if source_language not in allowable_languages:
logger.debug(f"Invalid source language '{source_language}'. Supported languages are: {', '.join(allowable_languages)}")
# Return a default model if source language is invalid
source_language = "en" # Default to 'en'
if target_language not in allowable_languages:
logger.debug(f"Invalid target language '{target_language}'. Supported languages are: {', '.join(allowable_languages)}")
# Return a default model if target language is invalid
target_language = "zh" # Default to 'zh'
if source_language == target_language:
source_language = "en" # Default to 'en'
target_language = "zh" # Default to 'zh'
# Return the model using string concatenation
return f"Helsinki-NLP/opus-mt-{source_language}-{target_language}"
def translate_single_entry(entry, translator):
original_text = entry["text"]
translated_text = translator(original_text)[0]['translation_text']
return {
"start": entry["start"],
"original": original_text,
"translated": translated_text,
"end": entry["end"]
}
def translate_text(transcription_json, source_language, target_language):
# Load the translation model for the specified target language
translation_model_id = get_translation_model(source_language, target_language)
logger.debug(f"Translation model: {translation_model_id}")
translator = pipeline("translation", model=translation_model_id)
# Use ThreadPoolExecutor to parallelize translations
with concurrent.futures.ThreadPoolExecutor() as executor:
# Submit all translation tasks and collect results
translate_func = lambda entry: translate_single_entry(entry, translator)
translated_json = list(executor.map(translate_func, transcription_json))
# Sort the translated_json by start time
translated_json.sort(key=lambda x: x["start"])
# Log the components being added to translated_json
for entry in translated_json:
logger.debug("Added to translated_json: start=%s, original=%s, translated=%s, end=%s",
entry["start"], entry["original"], entry["translated"], entry["end"])
return translated_json
def update_translations(file, edited_table, mode):
"""
Update the translations based on user edits in the Gradio Dataframe.
"""
output_video_path = "output_video.mp4"
logger.debug(f"Editable Table: {edited_table}")
if file is None:
logger.info("No file uploaded. Please upload a video/audio file.")
return None, [], None, "No file uploaded. Please upload a video/audio file."
try:
start_time = time.time() # Start the timer
# Convert the edited_table (list of lists) back to list of dictionaries
updated_translations = [
{
"start": row["start"], # Access by column name
"original": row["original"],
"translated": row["translated"],
"end": row["end"]
}
for _, row in edited_table.iterrows()
]
# Call the function to process the video with updated translations
add_transcript_voiceover(file.name, updated_translations, output_video_path, mode=="Transcription with Voiceover")
# Calculate elapsed time
elapsed_time = time.time() - start_time
elapsed_time_display = f"Updates applied successfully in {elapsed_time:.2f} seconds."
return output_video_path, elapsed_time_display
except Exception as e:
raise ValueError(f"Error updating translations: {e}")
def process_entry(entry, i, video_width, video_height, add_voiceover, target_language, speaker_sample_paths=None):
logger.debug(f"Processing entry {i}: {entry}")
# Create text clip for subtitles
txt_clip = TextClip(
txt=entry["translated"],
font="./NotoSansSC-Regular.ttf",
color='yellow',
stroke_color='black',
stroke_width=2,
fontsize=int(video_height // 20),
).with_start(entry["start"]).with_duration(entry["end"] - entry["start"]).with_position(('bottom')).with_opacity(0.8)
audio_segment = None
if add_voiceover:
segment_audio_path = f"segment_{i}_voiceover.wav"
desired_duration = entry["end"] - entry["start"]
speaker_id = entry["speaker"] # Extract the speaker ID
speaker_wav_path = f"speaker_{speaker_id}_sample.wav" # pass the intermediate value to prevent from breaking.
generate_voiceover_clone([entry], desired_duration, target_language, speaker_wav_path, segment_audio_path)
audio_clip = AudioFileClip(segment_audio_path)
# Get and log all methods in AudioFileClip
logger.info("Methods in AudioFileClip:")
for method in dir(audio_clip):
logger.info(method)
# Log duration of the audio clip and the desired duration for debugging.
logger.debug(f"Audio clip duration: {audio_clip.duration}, Desired duration: {desired_duration}")
if audio_clip.duration < desired_duration:
# Pad with silence if audio is too short
silence_duration = desired_duration - audio_clip.duration
# Concatenate the original audio and silence
audio_clip = concatenate_audioclips([audio_clip, silence(duration=silence_duration)])
logger.info(f"Padded audio with {silence_duration} seconds of silence.")
# Set the audio_segment to the required duration.
audio_segment = audio_clip.with_start(entry["start"]).with_duration(desired_duration)
return i, txt_clip, audio_segment
def add_transcript_voiceover(video_path, translated_json, output_path, add_voiceover=False, target_language="en", speaker_sample_paths=None):
"""
Add transcript and voiceover to a video, segment by segment.
"""
video = VideoFileClip(video_path)
font_path = "./NotoSansSC-Regular.ttf"
text_clips = []
audio_segments = []
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [executor.submit(process_entry, entry, i, video.w, video.h, add_voiceover, target_language, speaker_sample_paths)
for i, entry in enumerate(translated_json)]
# Collect results with original index i
results = []
for future in concurrent.futures.as_completed(futures):
try:
i, txt_clip, audio_segment = future.result()
results.append((i, txt_clip, audio_segment))
except Exception as e:
logger.error(f"Error processing entry: {e}")
# Sort by original index i
results.sort(key=lambda x: x[0])
# Extract sorted clips
text_clips = [clip for i, clip, segment in results]
final_video = CompositeVideoClip([video] + text_clips)
logger.info("Methods in CompositeVideoClip:")
for method in dir(final_video):
logger.info(method)
if add_voiceover:
audio_segments = [segment for i, clip, segment in results if segment is not None]
final_audio = CompositeAudioClip(audio_segments) # Critical fix
final_audio = final_audio.with_duration(video.duration)
final_video = final_video.with_audio(final_audio)
logger.info(f"Saving the final video to: {output_path}")
final_video.write_videofile(output_path, codec="libx264", audio_codec="aac")
logger.info("Video processing completed successfully.")
# Voice cloning function with debug and error handling
def generate_voiceover_clone(translated_json, desired_duration, target_language, speaker_wav_path, output_audio_path):
try:
full_text = " ".join(entry["translated"] for entry in translated_json)
speed_tts = calculate_speed(full_text, desired_duration)
if not speaker_wav_path or not os.path.exists(speaker_wav_path):
return None, "❌ Please upload a valid speaker audio file."
print(f"πŸ“₯ Received text: {full_text}")
print(f"πŸ“ Speaker audio path: {speaker_wav_path}")
print(f"🌐 Selected language: {target_language}")
print(f"⏱️ Target speed: {speed_tts}")
# Run TTS with speed control (if supported by model)
tts.tts_to_file(
text=full_text,
speaker_wav=speaker_wav_path,
language=language,
file_path=output_audio_path,
speed=speed_tts # <- add speed control
)
print("βœ… Voice cloning completed.")
return output_path, "βœ… Voice cloning completed successfully."
except Exception as e:
print("❌ Error during voice cloning:")
traceback.print_exc()
error_msg = f"❌ An error occurred: {str(e)}"
return None, error_msg
def truncated_linear(x):
if x < 15:
return 1
elif x > 25:
return 1.3
else:
slope = (1.3 - 1) / (25 - 15)
return 1 + slope * (x - 15)
def calculate_speed(text, desired_duration):
# Calculate characters per second
char_count = len(text)
chars_per_second = char_count / (desired_duration + 0.001)
# Apply truncated linear function to get speed
speed = truncated_linear(chars_per_second)
return speed
def upload_and_manage(file, target_language, mode="transcription"):
if file is None:
logger.info("No file uploaded. Please upload a video/audio file.")
return None, [], None, "No file uploaded. Please upload a video/audio file."
try:
start_time = time.time() # Start the timer
logger.info(f"Started processing file: {file.name}")
# Define paths for audio and output files
audio_path = "audio.wav"
output_video_path = "output_video.mp4"
voiceover_path = "voiceover.wav"
logger.info(f"Using audio path: {audio_path}, output video path: {output_video_path}, voiceover path: {voiceover_path}")
# Step 1: Transcribe audio from uploaded media file and get timestamps
logger.info("Transcribing audio...")
transcription_json, source_language = transcribe_video_with_speakers(file.name)
logger.info(f"Transcription completed. Detected source language: {source_language}")
# Step 2: Translate the transcription
logger.info(f"Translating transcription from {source_language} to {target_language}...")
translated_json = translate_text(transcription_json, source_language, target_language)
logger.info(f"Translation completed. Number of translated segments: {len(translated_json)}")
# Step 3: Add transcript to video based on timestamps
logger.info("Adding translated transcript to video...")
add_transcript_voiceover(file.name, translated_json, output_video_path, mode == "Transcription with Voiceover", target_language)
logger.info(f"Transcript added to video. Output video saved at {output_video_path}")
# Convert translated JSON into a format for the editable table
logger.info("Converting translated JSON into editable table format...")
editable_table = [
[float(entry["start"]), entry["original"], entry["translated"], float(entry["end"]), entry["speaker"]]
for entry in translated_json
]
# Calculate elapsed time
elapsed_time = time.time() - start_time
elapsed_time_display = f"Processing completed in {elapsed_time:.2f} seconds."
logger.info(f"Processing completed in {elapsed_time:.2f} seconds.")
return translated_json, editable_table, output_video_path, elapsed_time_display
except Exception as e:
logger.error(f"An error occurred: {str(e)}")
return None, [], None, f"An error occurred: {str(e)}"
# Gradio Interface with Tabs
def build_interface():
with gr.Blocks(css=css) as demo:
gr.Markdown("## Video Localization")
with gr.Row():
with gr.Column(scale=4):
file_input = gr.File(label="Upload Video/Audio File")
language_input = gr.Dropdown(["en", "es", "fr", "zh"], label="Select Language") # Language codes
process_mode = gr.Radio(choices=["Transcription", "Transcription with Voiceover"], label="Choose Processing Type", value="Transcription")
submit_button = gr.Button("Post and Process")
editable_translations = gr.State(value=[])
with gr.Column(scale=8):
gr.Markdown("## Edit Translations")
# Editable JSON Data
editable_table = gr.Dataframe(
value=[], # Default to an empty list to avoid undefined values
headers=["start", "original", "translated", "end", "speaker"],
datatype=["number", "str", "str", "number", "str"],
row_count=1, # Initially empty
col_count=5,
interactive=[False, True, True, False, False], # Control editability
label="Edit Translations",
wrap=True # Enables text wrapping if supported
)
save_changes_button = gr.Button("Save Changes")
processed_video_output = gr.File(label="Download Processed Video", interactive=True) # Download button
elapsed_time_display = gr.Textbox(label="Elapsed Time", lines=1, interactive=False)
with gr.Column(scale=1):
gr.Markdown("**Feedback**")
feedback_input = gr.Textbox(
placeholder="Leave your feedback here...",
label=None,
lines=3,
)
feedback_btn = gr.Button("Submit Feedback")
response_message = gr.Textbox(label=None, lines=1, interactive=False)
db_download = gr.File(label="Download Database File", visible=False)
# Link the feedback handling
def feedback_submission(feedback):
message, file_path = handle_feedback(feedback)
if file_path:
return message, gr.update(value=file_path, visible=True)
return message, gr.update(visible=False)
save_changes_button.click(
update_translations,
inputs=[file_input, editable_table, process_mode],
outputs=[processed_video_output, elapsed_time_display]
)
submit_button.click(
upload_and_manage,
inputs=[file_input, language_input, process_mode],
outputs=[editable_translations, editable_table, processed_video_output, elapsed_time_display]
)
# Connect submit button to save_feedback_db function
feedback_btn.click(
feedback_submission,
inputs=[feedback_input],
outputs=[response_message, db_download]
)
return demo
# Launch the Gradio interface
demo = build_interface()
demo.launch()