File size: 22,789 Bytes
cd89a99
e84d196
cd89a99
 
 
 
 
 
 
14d19ae
cd89a99
 
 
 
 
 
 
 
fd45462
cd89a99
 
 
 
 
 
9ecc376
cd89a99
bc61e6f
e106937
 
a4f3333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd89a99
e106937
 
 
3458dd7
51a7dcd
fd45462
 
 
 
 
dc0837c
 
 
 
 
 
 
 
 
fd45462
cd89a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4f3333
 
cd89a99
 
 
a4f3333
cd89a99
a4f3333
 
 
2e011e4
 
 
 
 
 
 
 
 
9b8d377
 
 
 
2e011e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4f3333
 
 
 
 
 
 
 
 
 
 
 
 
 
e84d196
a4f3333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd89a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a582ed6
 
 
 
 
 
 
 
 
 
cd89a99
 
 
 
 
 
a582ed6
 
 
 
 
 
 
 
 
 
 
 
 
 
cd89a99
 
 
 
 
 
 
 
 
edf0e1c
 
 
 
cd89a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4f3333
cd89a99
 
 
 
14d19ae
cd89a99
 
681c11a
 
14d19ae
cd89a99
 
 
 
 
4291f64
8cdd6ff
 
b263264
a4f3333
cd89a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4f3333
cd89a99
 
 
 
 
 
 
 
 
 
a4f3333
cd89a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4f3333
 
cd89a99
a4f3333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd89a99
a4f3333
 
 
 
51a7dcd
4291f64
 
 
 
5ffc8c6
4291f64
5ffc8c6
4291f64
 
 
 
 
 
 
 
 
 
 
 
cd89a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4f3333
cd89a99
 
 
 
 
 
 
 
 
5ef22e6
cd89a99
 
 
 
 
a4f3333
cd89a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3458dd7
 
cd89a99
3458dd7
 
cd89a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4f3333
cd89a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
import numpy as np
import re
import concurrent.futures
import gradio as gr
from datetime import datetime
import random
import moviepy
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
from moviepy.editor import (
    VideoFileClip,
    TextClip, 
    CompositeVideoClip,
    CompositeAudioClip,
    AudioFileClip,
    concatenate_videoclips,
    concatenate_audioclips
)
from moviepy.audio.AudioClip import AudioArrayClip
import subprocess
import speech_recognition as sr
import json
from nltk.tokenize import sent_tokenize
import logging
from textblob import TextBlob
import whisperx
import time
import os
import openai 
from openai import OpenAI 
import traceback
from TTS.api import TTS
import torch
from TTS.tts.configs.xtts_config import XttsConfig

# Accept license terms for Coqui XTTS
os.environ["COQUI_TOS_AGREED"] = "1"
torch.serialization.add_safe_globals([XttsConfig])

# Load XTTS model
try:
    print("πŸ”„ Loading XTTS model...")
    tts = TTS(model_name="tts_models/multilingual/multi-dataset/xtts_v2")
    print("βœ… XTTS model loaded successfully.")
except Exception as e:
    print("❌ Error loading XTTS model:")
    traceback.print_exc()
    raise e

client = OpenAI(
    api_key= os.environ.get("openAI_api_key"),  # This is the default and can be omitted
)
hf_api_key = os.environ.get("hf_token")

def silence(duration, fps=44100):
    """
    Returns a silent AudioClip of the specified duration.
    """
    return AudioArrayClip(np.zeros((int(fps*duration), 2)), fps=fps)

def count_words_or_characters(text):
    # Count non-Chinese words
    non_chinese_words = len(re.findall(r'\b[a-zA-Z0-9]+\b', text))
    
    # Count Chinese characters
    chinese_chars = len(re.findall(r'[\u4e00-\u9fff]', text))
    
    return non_chinese_words + chinese_chars
    
# Define the passcode
PASSCODE = "show_feedback_db"

css = """
/* Adjust row height */
.dataframe-container tr {
    height: 50px !important; 
}

/* Ensure text wrapping and prevent overflow */
.dataframe-container td {
    white-space: normal !important; 
    word-break: break-word !important;
}

/* Set column widths */
[data-testid="block-container"] .scrolling-dataframe th:nth-child(1), 
[data-testid="block-container"] .scrolling-dataframe td:nth-child(1) {
    width: 6%; /* Start column */
}

[data-testid="block-container"] .scrolling-dataframe th:nth-child(2), 
[data-testid="block-container"] .scrolling-dataframe td:nth-child(2) {
    width: 47%; /* Original text */
}

[data-testid="block-container"] .scrolling-dataframe th:nth-child(3), 
[data-testid="block-container"] .scrolling-dataframe td:nth-child(3) {
    width: 47%; /* Translated text */
}

[data-testid="block-container"] .scrolling-dataframe th:nth-child(4), 
[data-testid="block-container"] .scrolling-dataframe td:nth-child(4) {
    display: none !important;
}
"""

# Function to save feedback or provide access to the database file
def handle_feedback(feedback):
    feedback = feedback.strip()  # Clean up leading/trailing whitespace
    if not feedback:
        return "Feedback cannot be empty.", None

    if feedback == PASSCODE:
        # Provide access to the feedback.db file
        return "Access granted! Download the database file below.", "feedback.db"
    else:
        # Save feedback to the database
        with sqlite3.connect("feedback.db") as conn:
            cursor = conn.cursor()
            cursor.execute("CREATE TABLE IF NOT EXISTS studio_feedback (id INTEGER PRIMARY KEY, comment TEXT)")
            cursor.execute("INSERT INTO studio_feedback (comment) VALUES (?)", (feedback,))
            conn.commit()
        return "Thank you for your feedback!", None

# Configure logging
logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
logger.info(f"MoviePy Version: {moviepy.__version__}")

def transcribe_video_with_speakers(video_path):
    # Extract audio from video
    video = VideoFileClip(video_path)
    audio_path = "audio.wav"
    video.audio.write_audiofile(audio_path)
    logger.info(f"Audio extracted from video: {audio_path}")
    
    # Set up device
    device = "cuda" if torch.cuda.is_available() else "cpu"
    logger.info(f"Using device: {device}")
    
    try:
        # Load a medium model with float32 for broader compatibility
        model = whisperx.load_model("medium", device=device, compute_type="float32")
        logger.info("WhisperX model loaded")
    
        # Transcribe
        result = model.transcribe(audio_path)
        logger.info("Audio transcription completed")

        # Get the detected language
        detected_language = result["language"]
        logger.debug(f"Detected language: {detected_language}")
        # Alignment
        model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
        result = whisperx.align(result["segments"], model_a, metadata, audio_path, device)
        logger.info("Transcription alignment completed")
    
        # Diarization (works independently of Whisper model size)
        diarize_model = whisperx.DiarizationPipeline(use_auth_token=hf_api_key, device=device)
        diarize_segments = diarize_model(audio_path)
        logger.info("Speaker diarization completed")
    
        # Assign speakers
        result = whisperx.assign_word_speakers(diarize_segments, result)
        logger.info("Speakers assigned to transcribed segments")
    
    except Exception as e:
        logger.error(f"❌ WhisperX pipeline failed: {e}")

    # Extract timestamps, text, and speaker IDs
    transcript_with_speakers = [
        {
            "start": segment["start"],
            "end": segment["end"],
            "text": segment["text"],
            "speaker": segment["speaker"]
        }
        for segment in result["segments"]
    ]

    # Collect audio for each speaker
    speaker_audio = {}
    for segment in result["segments"]:
        speaker = segment["speaker"]
        if speaker not in speaker_audio:
            speaker_audio[speaker] = []
        speaker_audio[speaker].append((segment["start"], segment["end"]))

    # Collapse and truncate speaker audio
    speaker_sample_paths = {}
    audio_clip = AudioFileClip(audio_path)
    for speaker, segments in speaker_audio.items():
        speaker_clips = [audio_clip.subclip(start, end) for start, end in segments]
        combined_clip = concatenate_audioclips(speaker_clips)
        truncated_clip = combined_clip.subclip(0, min(30, combined_clip.duration))
        sample_path = f"speaker_{speaker}_sample.wav"
        truncated_clip.write_audiofile(sample_path)
        speaker_sample_paths[speaker] = sample_path
        logger.info(f"Created sample for {speaker}: {sample_path}")

    # Clean up
    video.close()
    audio_clip.close()
    os.remove(audio_path)

    return transcript_with_speakers, detected_language

# Function to get the appropriate translation model based on target language
def get_translation_model(source_language, target_language):
    """
    Get the translation model based on the source and target language.

    Parameters:
    - target_language (str): The language to translate the content into (e.g., 'es', 'fr').
    - source_language (str): The language of the input content (default is 'en' for English).
    
    Returns:
    - str: The translation model identifier.
    """
    # List of allowable languages
    allowable_languages = ["en", "es", "fr", "zh", "de", "it", "pt", "ja", "ko", "ru"]

    # Validate source and target languages
    if source_language not in allowable_languages:
        logger.debug(f"Invalid source language '{source_language}'. Supported languages are: {', '.join(allowable_languages)}")
        # Return a default model if source language is invalid
        source_language = "en"  # Default to 'en'

    if target_language not in allowable_languages:
        logger.debug(f"Invalid target language '{target_language}'. Supported languages are: {', '.join(allowable_languages)}")
        # Return a default model if target language is invalid
        target_language = "zh"  # Default to 'zh'

    if source_language == target_language:
        source_language = "en"  # Default to 'en'
        target_language = "zh"  # Default to 'zh'

    # Return the model using string concatenation
    return f"Helsinki-NLP/opus-mt-{source_language}-{target_language}"

def translate_single_entry(entry, translator):
    original_text = entry["text"]
    translated_text = translator(original_text)[0]['translation_text']
    return {
        "start": entry["start"],
        "original": original_text,
        "translated": translated_text,
        "end": entry["end"]
    }

def translate_text(transcription_json, source_language, target_language):
    # Load the translation model for the specified target language
    translation_model_id = get_translation_model(source_language, target_language)
    logger.debug(f"Translation model: {translation_model_id}")
    translator = pipeline("translation", model=translation_model_id)

    # Use ThreadPoolExecutor to parallelize translations
    with concurrent.futures.ThreadPoolExecutor() as executor:
        # Submit all translation tasks and collect results
        translate_func = lambda entry: translate_single_entry(entry, translator)
        translated_json = list(executor.map(translate_func, transcription_json))

    # Sort the translated_json by start time
    translated_json.sort(key=lambda x: x["start"])

    # Log the components being added to translated_json
    for entry in translated_json:
        logger.debug("Added to translated_json: start=%s, original=%s, translated=%s, end=%s",
                     entry["start"], entry["original"], entry["translated"], entry["end"])

    return translated_json

def update_translations(file, edited_table, mode):
    """
    Update the translations based on user edits in the Gradio Dataframe.
    """
    output_video_path = "output_video.mp4"
    logger.debug(f"Editable Table: {edited_table}")

    if file is None:
        logger.info("No file uploaded. Please upload a video/audio file.")
        return None, [], None, "No file uploaded. Please upload a video/audio file."
        
    try:
        start_time = time.time()  # Start the timer

        # Convert the edited_table (list of lists) back to list of dictionaries
        updated_translations = [
            {
                "start": row["start"],  # Access by column name
                "original": row["original"],
                "translated": row["translated"],
                "end": row["end"]
            }
            for _, row in edited_table.iterrows()
        ]

        # Call the function to process the video with updated translations
        add_transcript_voiceover(file.name, updated_translations, output_video_path, mode=="Transcription with Voiceover")

        # Calculate elapsed time
        elapsed_time = time.time() - start_time
        elapsed_time_display = f"Updates applied successfully in {elapsed_time:.2f} seconds."

        return output_video_path, elapsed_time_display

    except Exception as e:
        raise ValueError(f"Error updating translations: {e}")

def process_entry(entry, i, video_width, video_height, add_voiceover, target_language, speaker_sample_paths=None):
    logger.debug(f"Processing entry {i}: {entry}")

    # Create text clip for subtitles
    txt_clip = TextClip(
        txt=entry["translated"],
        font="./NotoSansSC-Regular.ttf",
        color='yellow',
        stroke_color='black',
        stroke_width=2,
        fontsize=int(video_height // 20),
    ).with_start(entry["start"]).with_duration(entry["end"] - entry["start"]).with_position(('bottom')).with_opacity(0.8)

    audio_segment = None
    if add_voiceover:
        segment_audio_path = f"segment_{i}_voiceover.wav"
        desired_duration = entry["end"] - entry["start"]
        speaker_id = entry["speaker"]  # Extract the speaker ID
        speaker_wav_path = f"speaker_{speaker_id}_sample.wav" # pass the intermediate value to prevent from breaking.
        generate_voiceover_clone([entry], desired_duration, target_language, speaker_wav_path, segment_audio_path)
        
        audio_clip = AudioFileClip(segment_audio_path)
        # Get and log all methods in AudioFileClip        
        logger.info("Methods in AudioFileClip:")
        for method in dir(audio_clip):
            logger.info(method)
        
        # Log duration of the audio clip and the desired duration for debugging.
        logger.debug(f"Audio clip duration: {audio_clip.duration}, Desired duration: {desired_duration}")

        if audio_clip.duration < desired_duration:
            # Pad with silence if audio is too short
            silence_duration = desired_duration - audio_clip.duration

            # Concatenate the original audio and silence
            audio_clip = concatenate_audioclips([audio_clip, silence(duration=silence_duration)])
            logger.info(f"Padded audio with {silence_duration} seconds of silence.")
        
        # Set the audio_segment to the required duration.
        audio_segment = audio_clip.with_start(entry["start"]).with_duration(desired_duration)

    return i, txt_clip, audio_segment

def add_transcript_voiceover(video_path, translated_json, output_path, add_voiceover=False, target_language="en", speaker_sample_paths=None):
    """
    Add transcript and voiceover to a video, segment by segment.
    """
    video = VideoFileClip(video_path)
    font_path = "./NotoSansSC-Regular.ttf"

    text_clips = []
    audio_segments = []

    with concurrent.futures.ThreadPoolExecutor() as executor:
        futures = [executor.submit(process_entry, entry, i, video.w, video.h, add_voiceover, target_language, speaker_sample_paths)
                   for i, entry in enumerate(translated_json)]

        # Collect results with original index i
        results = []
        for future in concurrent.futures.as_completed(futures):
            try:
                i, txt_clip, audio_segment = future.result()
                results.append((i, txt_clip, audio_segment))
            except Exception as e:
                logger.error(f"Error processing entry: {e}")
                
    # Sort by original index i
    results.sort(key=lambda x: x[0])
    
    # Extract sorted clips
    text_clips = [clip for i, clip, segment in results]

    final_video = CompositeVideoClip([video] + text_clips)

    logger.info("Methods in CompositeVideoClip:")
    for method in dir(final_video):
        logger.info(method)
    
    if add_voiceover:
        audio_segments = [segment for i, clip, segment in results if segment is not None]
        final_audio = CompositeAudioClip(audio_segments)  # Critical fix
        final_audio = final_audio.with_duration(video.duration)

        final_video = final_video.with_audio(final_audio)

    logger.info(f"Saving the final video to: {output_path}")
    final_video.write_videofile(output_path, codec="libx264", audio_codec="aac")

    logger.info("Video processing completed successfully.")

# Voice cloning function with debug and error handling
def generate_voiceover_clone(translated_json, desired_duration, target_language, speaker_wav_path, output_audio_path):
    try:
        full_text = " ".join(entry["translated"] for entry in translated_json)
        speed_tts = calculate_speed(full_text, desired_duration)
        if not speaker_wav_path or not os.path.exists(speaker_wav_path):
            return None, "❌ Please upload a valid speaker audio file."

        print(f"πŸ“₯ Received text: {full_text}")
        print(f"πŸ“ Speaker audio path: {speaker_wav_path}")
        print(f"🌐 Selected language: {target_language}")
        print(f"⏱️ Target speed: {speed_tts}")

        # Run TTS with speed control (if supported by model)
        tts.tts_to_file(
            text=full_text,
            speaker_wav=speaker_wav_path,
            language=language,
            file_path=output_audio_path,
            speed=speed_tts  # <- add speed control
        )
        print("βœ… Voice cloning completed.")
        return output_path, "βœ… Voice cloning completed successfully."

    except Exception as e:
        print("❌ Error during voice cloning:")
        traceback.print_exc()
        error_msg = f"❌ An error occurred: {str(e)}"
        return None, error_msg

def truncated_linear(x):
    if x < 15:
        return 1
    elif x > 25:
        return 1.3
    else:
        slope = (1.3 - 1) / (25 - 15)
        return 1 + slope * (x - 15)

def calculate_speed(text, desired_duration):
    # Calculate characters per second
    char_count = len(text)
    chars_per_second = char_count / (desired_duration + 0.001)
    
    # Apply truncated linear function to get speed
    speed = truncated_linear(chars_per_second)
    
    return speed

def upload_and_manage(file, target_language, mode="transcription"):
    if file is None:
        logger.info("No file uploaded. Please upload a video/audio file.")
        return None, [], None, "No file uploaded. Please upload a video/audio file."

    try:
        start_time = time.time()  # Start the timer
        logger.info(f"Started processing file: {file.name}")

        # Define paths for audio and output files
        audio_path = "audio.wav"
        output_video_path = "output_video.mp4"
        voiceover_path = "voiceover.wav"
        logger.info(f"Using audio path: {audio_path}, output video path: {output_video_path}, voiceover path: {voiceover_path}")

        # Step 1: Transcribe audio from uploaded media file and get timestamps
        logger.info("Transcribing audio...")
        transcription_json, source_language = transcribe_video_with_speakers(file.name)
        logger.info(f"Transcription completed. Detected source language: {source_language}")

        # Step 2: Translate the transcription
        logger.info(f"Translating transcription from {source_language} to {target_language}...")
        translated_json = translate_text(transcription_json, source_language, target_language)
        logger.info(f"Translation completed. Number of translated segments: {len(translated_json)}")

        # Step 3: Add transcript to video based on timestamps
        logger.info("Adding translated transcript to video...")
        add_transcript_voiceover(file.name, translated_json, output_video_path, mode == "Transcription with Voiceover", target_language)
        logger.info(f"Transcript added to video. Output video saved at {output_video_path}")

        # Convert translated JSON into a format for the editable table
        logger.info("Converting translated JSON into editable table format...")
        editable_table = [
            [float(entry["start"]), entry["original"], entry["translated"], float(entry["end"]), entry["speaker"]]
            for entry in translated_json
        ]

        # Calculate elapsed time
        elapsed_time = time.time() - start_time
        elapsed_time_display = f"Processing completed in {elapsed_time:.2f} seconds."
        logger.info(f"Processing completed in {elapsed_time:.2f} seconds.")

        return translated_json, editable_table, output_video_path, elapsed_time_display

    except Exception as e:
        logger.error(f"An error occurred: {str(e)}")
        return None, [], None, f"An error occurred: {str(e)}"
# Gradio Interface with Tabs
def build_interface():
    with gr.Blocks(css=css) as demo:
        gr.Markdown("## Video Localization")
        with gr.Row():
            with gr.Column(scale=4):
                file_input = gr.File(label="Upload Video/Audio File")
                language_input = gr.Dropdown(["en", "es", "fr", "zh"], label="Select Language")  # Language codes
                process_mode = gr.Radio(choices=["Transcription", "Transcription with Voiceover"], label="Choose Processing Type", value="Transcription")
                submit_button = gr.Button("Post and Process")
                editable_translations = gr.State(value=[])

            with gr.Column(scale=8):
                gr.Markdown("## Edit Translations")
                
                # Editable JSON Data
                editable_table = gr.Dataframe(
                    value=[],  # Default to an empty list to avoid undefined values
                    headers=["start", "original", "translated", "end", "speaker"],
                    datatype=["number", "str", "str", "number", "str"],
                    row_count=1,  # Initially empty
                    col_count=5,
                    interactive=[False, True, True, False, False],  # Control editability
                    label="Edit Translations",
                    wrap=True  # Enables text wrapping if supported
                )
                save_changes_button = gr.Button("Save Changes")
                processed_video_output = gr.File(label="Download Processed Video", interactive=True)  # Download button
                elapsed_time_display = gr.Textbox(label="Elapsed Time", lines=1, interactive=False)

            with gr.Column(scale=1):
                gr.Markdown("**Feedback**")
                feedback_input = gr.Textbox(
                    placeholder="Leave your feedback here...",
                    label=None,
                    lines=3,
                )
                feedback_btn = gr.Button("Submit Feedback")
                response_message = gr.Textbox(label=None, lines=1, interactive=False)
                db_download = gr.File(label="Download Database File", visible=False)
            
                # Link the feedback handling
                def feedback_submission(feedback):
                    message, file_path = handle_feedback(feedback)
                    if file_path:
                        return message, gr.update(value=file_path, visible=True)
                    return message, gr.update(visible=False)            

            save_changes_button.click(
                update_translations, 
                inputs=[file_input, editable_table, process_mode],
                outputs=[processed_video_output, elapsed_time_display]
            )

            submit_button.click(
                upload_and_manage, 
                inputs=[file_input, language_input, process_mode], 
                outputs=[editable_translations, editable_table, processed_video_output, elapsed_time_display]
            )

            # Connect submit button to save_feedback_db function
            feedback_btn.click(
                feedback_submission, 
                inputs=[feedback_input], 
                outputs=[response_message, db_download]
            )

    return demo

# Launch the Gradio interface
demo = build_interface()
demo.launch()