File size: 29,613 Bytes
cd89a99 d301d25 e84d196 cd89a99 14d19ae e1b0b64 cd89a99 e1b0b64 fd45462 cd89a99 9ecc376 cd89a99 bc61e6f e106937 a4f3333 54c4dc6 66e3856 a4f3333 cb756d1 a4f3333 65983b3 a4f3333 515a3f9 e106937 3458dd7 51a7dcd 0f69689 dc0837c 0f69689 dc0837c 0f69689 fd45462 0f69689 c6210a3 d980a07 68eec85 28c6cdd 68eec85 6e5afce 68eec85 32a25f2 6e5afce 68eec85 32a25f2 68eec85 32a25f2 68eec85 6e5afce 32a25f2 68eec85 32a25f2 6e5afce 32a25f2 0f69689 54c4dc6 cd89a99 0f69689 2e011e4 0f69689 25565c3 0f69689 2e011e4 0f69689 170fcbf 0f69689 2e011e4 0f69689 2e011e4 0f69689 2e011e4 0f69689 cd89a99 0f69689 aa415e7 0f69689 edf0e1c 0f69689 aa415e7 0f69689 dc3b40e 7963262 dc3b40e 7963262 dc3b40e 0f69689 e49fd50 0f69689 d301d25 6432d56 0f69689 d301d25 aa415e7 0f69689 4cba5c4 0f69689 4e48d07 d301d25 32a25f2 d301d25 32a25f2 4cba5c4 4e48d07 0f69689 82831f3 0f69689 d301d25 0f69689 d301d25 0f69689 d301d25 c6210a3 d301d25 0f69689 d301d25 0f69689 d301d25 aa415e7 4cba5c4 d301d25 4cba5c4 54c4dc6 0f69689 6432d56 0f69689 d301d25 0f69689 d301d25 0f69689 d301d25 68eec85 0f69689 68eec85 32a25f2 68eec85 d301d25 0f69689 d301d25 0f69689 4cba5c4 0f69689 4cba5c4 4e48d07 4cba5c4 0f69689 54c4dc6 0f69689 4cba5c4 0f69689 4e48d07 0f69689 35650ec 0f69689 35650ec 0f69689 35650ec 0f69689 0cd477f 0f69689 aa415e7 0f69689 3e5f302 0f69689 3e5f302 0f69689 aa415e7 0f69689 cd89a99 0f69689 cd89a99 0f69689 3e5f302 0f69689 54c4dc6 0f69689 cb756d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 |
import numpy as np
import cvxpy as cp
import re
import concurrent.futures
import gradio as gr
from datetime import datetime
import random
import moviepy
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
from moviepy.editor import (
ImageClip,
VideoFileClip,
TextClip,
CompositeVideoClip,
CompositeAudioClip,
AudioFileClip,
concatenate_videoclips,
concatenate_audioclips
)
from PIL import Image, ImageDraw, ImageFont
from moviepy.audio.AudioClip import AudioArrayClip
import subprocess
import speech_recognition as sr
import json
from nltk.tokenize import sent_tokenize
import logging
import whisperx
import time
import os
import openai
from openai import OpenAI
import traceback
from TTS.api import TTS
import torch
from pydub import AudioSegment
from pyannote.audio import Pipeline
import traceback
import wave
logger = logging.getLogger(__name__)
# Configure logging
logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
logger.info(f"MoviePy Version: {moviepy.__version__}")
# Accept license terms for Coqui XTTS
os.environ["COQUI_TOS_AGREED"] = "1"
# torch.serialization.add_safe_globals([XttsConfig])
logger.info(gr.__version__)
client = OpenAI(
api_key= os.environ.get("openAI_api_key"), # This is the default and can be omitted
)
hf_api_key = os.environ.get("hf_token")
def silence(duration, fps=44100):
"""
Returns a silent AudioClip of the specified duration.
"""
return AudioArrayClip(np.zeros((int(fps*duration), 2)), fps=fps)
def count_words_or_characters(text):
# Count non-Chinese words
non_chinese_words = len(re.findall(r'\b[a-zA-Z0-9]+\b', text))
# Count Chinese characters
chinese_chars = len(re.findall(r'[\u4e00-\u9fff]', text))
return non_chinese_words + chinese_chars
# Define the passcode
PASSCODE = "show_feedback_db"
css = """
/* Adjust row height */
.dataframe-container tr {
height: 50px !important;
}
/* Ensure text wrapping and prevent overflow */
.dataframe-container td {
white-space: normal !important;
word-break: break-word !important;
}
/* Set column widths */
[data-testid="block-container"] .scrolling-dataframe th:nth-child(1),
[data-testid="block-container"] .scrolling-dataframe td:nth-child(1) {
width: 6%; /* Start column */
}
[data-testid="block-container"] .scrolling-dataframe th:nth-child(2),
[data-testid="block-container"] .scrolling-dataframe td:nth-child(2) {
width: 47%; /* Original text */
}
[data-testid="block-container"] .scrolling-dataframe th:nth-child(3),
[data-testid="block-container"] .scrolling-dataframe td:nth-child(3) {
width: 47%; /* Translated text */
}
[data-testid="block-container"] .scrolling-dataframe th:nth-child(4),
[data-testid="block-container"] .scrolling-dataframe td:nth-child(4) {
display: none !important;
}
"""
# Function to save feedback or provide access to the database file
def handle_feedback(feedback):
feedback = feedback.strip() # Clean up leading/trailing whitespace
if not feedback:
return "Feedback cannot be empty.", None
if feedback == PASSCODE:
# Provide access to the feedback.db file
return "Access granted! Download the database file below.", "feedback.db"
else:
# Save feedback to the database
with sqlite3.connect("feedback.db") as conn:
cursor = conn.cursor()
cursor.execute("CREATE TABLE IF NOT EXISTS studio_feedback (id INTEGER PRIMARY KEY, comment TEXT)")
cursor.execute("INSERT INTO studio_feedback (comment) VALUES (?)", (feedback,))
conn.commit()
return "Thank you for your feedback!", None
def segment_background_audio(audio_path, background_audio_path="background_segments.wav"):
pipeline = Pipeline.from_pretrained("pyannote/voice-activity-detection", use_auth_token=hf_api_key)
vad_result = pipeline(audio_path)
full_audio = AudioSegment.from_wav(audio_path)
full_duration_sec = len(full_audio) / 1000.0
current_time = 0.0
result_audio = AudioSegment.empty()
for segment in vad_result.itersegments():
# Background segment before the speech
if current_time < segment.start:
bg = full_audio[int(current_time * 1000):int(segment.start * 1000)]
result_audio += bg
# Add silence for the speech duration
silence_duration = segment.end - segment.start
result_audio += AudioSegment.silent(duration=int(silence_duration * 1000))
current_time = segment.end
# Handle any remaining background after the last speech
if current_time < full_duration_sec:
result_audio += full_audio[int(current_time * 1000):]
result_audio.export(background_audio_path, format="wav")
return background_audio_path
def transcribe_video_with_speakers(video_path):
# Extract audio from video
video = VideoFileClip(video_path)
audio_path = "audio.wav"
video.audio.write_audiofile(audio_path)
logger.info(f"Audio extracted from video: {audio_path}")
segment_result = segment_background_audio(audio_path)
print(f"Saved non-speech (background) audio to local")
# Set up device
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device}")
try:
# Load a medium model with float32 for broader compatibility
model = whisperx.load_model("large-v3", device=device, compute_type="float32")
logger.info("WhisperX model loaded")
# Transcribe
result = model.transcribe(audio_path, chunk_size=6, print_progress = True)
logger.info("Audio transcription completed")
# Get the detected language
detected_language = result["language"]
logger.debug(f"Detected language: {detected_language}")
# Alignment
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
result = whisperx.align(result["segments"], model_a, metadata, audio_path, device)
logger.info("Transcription alignment completed")
# Diarization (works independently of Whisper model size)
diarize_model = whisperx.DiarizationPipeline(use_auth_token=hf_api_key, device=device)
diarize_segments = diarize_model(audio_path)
logger.info("Speaker diarization completed")
# Assign speakers
result = whisperx.assign_word_speakers(diarize_segments, result)
logger.info("Speakers assigned to transcribed segments")
except Exception as e:
logger.error(f"β WhisperX pipeline failed: {e}")
# Extract timestamps, text, and speaker IDs
transcript_with_speakers = [
{
"start": segment["start"],
"end": segment["end"],
"text": segment["text"],
"speaker": segment["speaker"]
}
for segment in result["segments"]
]
# Collect audio for each speaker
speaker_audio = {}
for segment in result["segments"]:
speaker = segment["speaker"]
if speaker not in speaker_audio:
speaker_audio[speaker] = []
speaker_audio[speaker].append((segment["start"], segment["end"]))
# Collapse and truncate speaker audio
speaker_sample_paths = {}
audio_clip = AudioFileClip(audio_path)
for speaker, segments in speaker_audio.items():
speaker_clips = [audio_clip.subclip(start, end) for start, end in segments]
combined_clip = concatenate_audioclips(speaker_clips)
truncated_clip = combined_clip.subclip(0, min(30, combined_clip.duration))
sample_path = f"speaker_{speaker}_sample.wav"
truncated_clip.write_audiofile(sample_path)
speaker_sample_paths[speaker] = sample_path
logger.info(f"Created sample for {speaker}: {sample_path}")
# Clean up
video.close()
audio_clip.close()
os.remove(audio_path)
return transcript_with_speakers, detected_language
# Function to get the appropriate translation model based on target language
def get_translation_model(source_language, target_language):
"""
Get the translation model based on the source and target language.
Parameters:
- target_language (str): The language to translate the content into (e.g., 'es', 'fr').
- source_language (str): The language of the input content (default is 'en' for English).
Returns:
- str: The translation model identifier.
"""
# List of allowable languages
allowable_languages = ["en", "es", "fr", "zh", "de", "it", "pt", "ja", "ko", "ru"]
# Validate source and target languages
if source_language not in allowable_languages:
logger.debug(f"Invalid source language '{source_language}'. Supported languages are: {', '.join(allowable_languages)}")
# Return a default model if source language is invalid
source_language = "en" # Default to 'en'
if target_language not in allowable_languages:
logger.debug(f"Invalid target language '{target_language}'. Supported languages are: {', '.join(allowable_languages)}")
# Return a default model if target language is invalid
target_language = "zh" # Default to 'zh'
if source_language == target_language:
source_language = "en" # Default to 'en'
target_language = "zh" # Default to 'zh'
# Return the model using string concatenation
return f"Helsinki-NLP/opus-mt-{source_language}-{target_language}"
def translate_single_entry(entry, translator):
original_text = entry["text"]
translated_text = translator(original_text)[0]['translation_text']
return {
"start": entry["start"],
"original": original_text,
"translated": translated_text,
"end": entry["end"],
"speaker": entry["speaker"]
}
def translate_text(transcription_json, source_language, target_language):
# Load the translation model for the specified target language
translation_model_id = get_translation_model(source_language, target_language)
logger.debug(f"Translation model: {translation_model_id}")
translator = pipeline("translation", model=translation_model_id)
# Use ThreadPoolExecutor to parallelize translations
with concurrent.futures.ThreadPoolExecutor() as executor:
# Submit all translation tasks and collect results
translate_func = lambda entry: translate_single_entry(entry, translator)
translated_json = list(executor.map(translate_func, transcription_json))
# Sort the translated_json by start time
translated_json.sort(key=lambda x: x["start"])
# Log the components being added to translated_json
for entry in translated_json:
logger.debug("Added to translated_json: start=%s, original=%s, translated=%s, end=%s, speaker=%s",
entry["start"], entry["original"], entry["translated"], entry["end"], entry["speaker"])
return translated_json
def update_translations(file, edited_table, process_mode):
"""
Update the translations based on user edits in the Gradio Dataframe.
"""
output_video_path = "output_video.mp4"
logger.debug(f"Editable Table: {edited_table}")
if file is None:
logger.info("No file uploaded. Please upload a video/audio file.")
return None, [], None, "No file uploaded. Please upload a video/audio file."
try:
start_time = time.time() # Start the timer
# Convert the edited_table (list of lists) back to list of dictionaries
updated_translations = [
{
"start": row["start"], # Access by column name
"original": row["original"],
"translated": row["translated"],
"end": row["end"]
}
for _, row in edited_table.iterrows()
]
# Call the function to process the video with updated translations
add_transcript_voiceover(file.name, updated_translations, output_video_path, process_mode)
# Calculate elapsed time
elapsed_time = time.time() - start_time
elapsed_time_display = f"Updates applied successfully in {elapsed_time:.2f} seconds."
return output_video_path, elapsed_time_display
except Exception as e:
raise ValueError(f"Error updating translations: {e}")
def create_subtitle_clip_pil(text, start_time, end_time, video_width, video_height, font_path):
try:
subtitle_width = int(video_width * 0.8)
aspect_ratio = video_height / video_width
if aspect_ratio > 1.2: # Portrait video
subtitle_font_size = int(video_width // 22)
else: # Landscape video
subtitle_font_size = int(video_height // 24)
font = ImageFont.truetype(font_path, subtitle_font_size)
dummy_img = Image.new("RGBA", (subtitle_width, 1), (0, 0, 0, 0))
draw = ImageDraw.Draw(dummy_img)
lines = []
line = ""
for word in text.split():
test_line = f"{line} {word}".strip()
bbox = draw.textbbox((0, 0), test_line, font=font)
w = bbox[2] - bbox[0]
if w <= subtitle_width - 10:
line = test_line
else:
lines.append(line)
line = word
lines.append(line)
line_heights = [draw.textbbox((0, 0), l, font=font)[3] - draw.textbbox((0, 0), l, font=font)[1] for l in lines]
total_height = sum(line_heights) + (len(lines) - 1) * 5
img = Image.new("RGBA", (subtitle_width, total_height), (0, 0, 0, 0))
draw = ImageDraw.Draw(img)
y = 0
for idx, line in enumerate(lines):
bbox = draw.textbbox((0, 0), line, font=font)
w = bbox[2] - bbox[0]
draw.text(((subtitle_width - w) // 2, y), line, font=font, fill="yellow")
y += line_heights[idx] + 5
img_np = np.array(img) # <- β
Fix: convert to NumPy
txt_clip = ImageClip(img_np).set_start(start_time).set_duration(end_time - start_time).set_position("bottom").set_opacity(0.8)
return txt_clip
except Exception as e:
logger.error(f"\u274c Failed to create subtitle clip: {e}")
return None
def solve_optimal_alignment(original_segments, generated_durations, total_duration):
"""
Robust version: Aligns generated speech segments, falls back to greedy allocation if solver fails.
Modifies and returns the translated_json with updated 'start' and 'end'.
"""
N = len(original_segments)
d = np.array(generated_durations)
m = np.array([(seg['start'] + seg['end']) / 2 for seg in original_segments])
try:
s = cp.Variable(N)
objective = cp.Minimize(cp.sum_squares(s + d / 2 - m))
constraints = [s[0] >= 0]
for i in range(N - 1):
constraints.append(s[i] + d[i] <= s[i + 1])
constraints.append(s[N - 1] + d[N - 1] == total_duration)
problem = cp.Problem(objective, constraints)
problem.solve()
if s.value is None:
raise ValueError("Solver failed")
for i in range(N):
original_segments[i]['start'] = round(s.value[i], 3)
original_segments[i]['end'] = round(s.value[i] + d[i], 3)
except Exception as e:
print(f"β οΈ Optimization failed: {e}, falling back to greedy alignment.")
current_time = 0.0
for i in range(N):
original_segments[i]['start'] = round(current_time, 3)
original_segments[i]['end'] = round(current_time + generated_durations[i], 3)
current_time += generated_durations[i]
return original_segments
def process_entry(entry, i, tts_model, video_width, video_height, process_mode, target_language, font_path, speaker_sample_paths=None):
logger.debug(f"Processing entry {i}: {entry}")
error_message = None
try:
txt_clip = create_subtitle_clip_pil(entry["translated"], entry["start"], entry["end"], video_width, video_height, font_path)
except Exception as e:
error_message = f"β Failed to create subtitle clip for entry {i}: {e}"
logger.error(error_message)
txt_clip = None
audio_segment = None
actual_duration = 0.0
if process_mode > 1:
try:
segment_audio_path = f"segment_{i}_voiceover.wav"
desired_duration = entry["end"] - entry["start"]
desired_speed = calibrated_speed(entry['translated'], desired_duration)
speaker = entry.get("speaker", "default")
speaker_wav_path = f"speaker_{speaker}_sample.wav"
supported_languages = tts_model.synthesizer.tts_model.language_manager.name_to_id.keys()
if process_mode > 2 and speaker_wav_path and os.path.exists(speaker_wav_path) and target_language in supported_languages:
generate_voiceover_clone(entry['translated'], tts_model, desired_speed, target_language, speaker_wav_path, segment_audio_path)
else:
generate_voiceover_OpenAI(entry['translated'], target_language, desired_speed, segment_audio_path)
if not segment_audio_path or not os.path.exists(segment_audio_path):
raise FileNotFoundError(f"Voiceover file not generated at: {segment_audio_path}")
audio_clip = AudioFileClip(segment_audio_path)
actual_duration = audio_clip.duration
audio_segment = audio_clip # Do not set start here, alignment happens later
except Exception as e:
err = f"β Failed to generate audio segment for entry {i}: {e}"
logger.error(err)
error_message = error_message + " | " + err if error_message else err
audio_segment = None
return i, txt_clip, audio_segment, actual_duration, error_message
def add_transcript_voiceover(video_path, translated_json, output_path, process_mode, target_language="en", speaker_sample_paths=None, background_audio_path="background_segments.wav"):
video = VideoFileClip(video_path)
font_path = "./NotoSansSC-Regular.ttf"
text_clips = []
audio_segments = []
actual_durations = []
error_messages = []
if process_mode == 3:
global tts_model
if tts_model is None:
try:
print("π Loading XTTS model...")
from TTS.api import TTS
tts_model = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts")
print("β
XTTS model loaded successfully.")
except Exception as e:
print("β Error loading XTTS model:")
traceback.print_exc()
return f"Error loading XTTS model: {e}"
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [executor.submit(process_entry, entry, i, tts_model, video.w, video.h, process_mode, target_language, font_path, speaker_sample_paths)
for i, entry in enumerate(translated_json)]
results = []
for future in concurrent.futures.as_completed(futures):
try:
i, txt_clip, audio_segment, actual_duration, error = future.result()
results.append((i, txt_clip, audio_segment, actual_duration))
if error:
error_messages.append(f"[Entry {i}] {error}")
except Exception as e:
err = f"β Unexpected error in future result: {e}"
error_messages.append(err)
results.sort(key=lambda x: x[0])
text_clips = [clip for _, clip, _, _ in results if clip]
generated_durations = [dur for _, _, _, dur in results if dur > 0]
# Align using optimization (modifies translated_json in-place)
translated_json = solve_optimal_alignment(translated_json, generated_durations, video.duration)
# Set aligned timings
audio_segments = []
for i, entry in enumerate(translated_json):
segment = results[i][2] # AudioFileClip
if segment:
segment = segment.set_start(entry['start']).set_duration(entry['end'] - entry['start'])
audio_segments.append(segment)
final_video = CompositeVideoClip([video] + text_clips)
if process_mode > 1 and audio_segments:
try:
voice_audio = CompositeAudioClip(audio_segments).set_duration(video.duration)
if background_audio_path and os.path.exists(background_audio_path):
background_audio = AudioFileClip(background_audio_path).set_duration(video.duration)
final_audio = CompositeAudioClip([voice_audio, background_audio])
else:
final_audio = voice_audio
final_video = final_video.set_audio(final_audio)
except Exception as e:
print(f"β Failed to set audio: {e}")
final_video.write_videofile(output_path, codec="libx264", audio_codec="aac")
return error_messages
def generate_voiceover_OpenAI(full_text, language, desired_speed, output_audio_path):
"""
Generate voiceover from translated text for a given language using OpenAI TTS API.
"""
# Define the voice based on the language (for now, use 'alloy' as default)
voice = "alloy" # Adjust based on language if needed
# Define the model (use tts-1 for real-time applications)
model = "tts-1"
max_retries = 3
retry_count = 0
while retry_count < max_retries:
try:
# Create the speech using OpenAI TTS API
response = client.audio.speech.create(
model=model,
voice=voice,
input=full_text,
speed=desired_speed
)
# Save the audio to the specified path
with open(output_audio_path, 'wb') as f:
for chunk in response.iter_bytes():
f.write(chunk)
logging.info(f"Voiceover generated successfully for {output_audio_path}")
break
except Exception as e:
retry_count += 1
logging.error(f"Error generating voiceover (retry {retry_count}/{max_retries}): {e}")
time.sleep(5) # Wait 5 seconds before retrying
if retry_count == max_retries:
raise ValueError(f"Failed to generate voiceover after {max_retries} retries.")
def generate_voiceover_clone(full_text, tts_model, desired_speed, target_language, speaker_wav_path, output_audio_path):
try:
tts_model.tts_to_file(
text=full_text,
speaker_wav=speaker_wav_path,
language=target_language,
file_path=output_audio_path,
speed=desired_speed,
split_sentences=True
)
msg = "β
Voice cloning completed successfully."
logger.info(msg)
return output_audio_path, msg, None
except Exception as e:
generate_voiceover_OpenAI(full_text, target_language, desired_speed, output_audio_path)
err_msg = f"β An error occurred: {str(e)}, fallback to premium voice"
logger.error(traceback.format_exc())
return None, err_msg, err_msg
def calibrated_speed(text, desired_duration):
"""
Compute a speed factor to help TTS fit audio into desired duration,
using a simple truncated linear function of characters per second.
"""
char_count = len(text.strip())
if char_count == 0 or desired_duration <= 0:
return 1.0 # fallback
cps = char_count / desired_duration # characters per second
# Truncated linear mapping
if cps < 14:
return 1.0
elif cps > 30:
return 2
else:
slope = (2 - 1.0) / (30 - 14)
return 1.0 + slope * (cps - 14)
def upload_and_manage(file, target_language, process_mode):
if file is None:
logger.info("No file uploaded. Please upload a video/audio file.")
return None, [], None, "No file uploaded. Please upload a video/audio file."
try:
start_time = time.time() # Start the timer
logger.info(f"Started processing file: {file.name}")
# Define paths for audio and output files
audio_path = "audio.wav"
output_video_path = "output_video.mp4"
voiceover_path = "voiceover.wav"
logger.info(f"Using audio path: {audio_path}, output video path: {output_video_path}, voiceover path: {voiceover_path}")
# Step 1: Transcribe audio from uploaded media file and get timestamps
logger.info("Transcribing audio...")
transcription_json, source_language = transcribe_video_with_speakers(file.name)
logger.info(f"Transcription completed. Detected source language: {source_language}")
# Step 2: Translate the transcription
logger.info(f"Translating transcription from {source_language} to {target_language}...")
translated_json = translate_text(transcription_json, source_language, target_language)
logger.info(f"Translation completed. Number of translated segments: {len(translated_json)}")
# Step 3: Add transcript to video based on timestamps
logger.info("Adding translated transcript to video...")
add_transcript_voiceover(file.name, translated_json, output_video_path, process_mode, target_language)
logger.info(f"Transcript added to video. Output video saved at {output_video_path}")
# Convert translated JSON into a format for the editable table
logger.info("Converting translated JSON into editable table format...")
editable_table = [
[float(entry["start"]), entry["original"], entry["translated"], float(entry["end"]), entry["speaker"]]
for entry in translated_json
]
# Calculate elapsed time
elapsed_time = time.time() - start_time
elapsed_time_display = f"Processing completed in {elapsed_time:.2f} seconds."
logger.info(f"Processing completed in {elapsed_time:.2f} seconds.")
return editable_table, output_video_path, elapsed_time_display
except Exception as e:
logger.error(f"An error occurred: {str(e)}")
return [], None, f"An error occurred: {str(e)}"
# Gradio Interface with Tabs
def build_interface():
with gr.Blocks(css=css) as demo:
gr.Markdown("## Video Localization")
with gr.Row():
with gr.Column(scale=4):
file_input = gr.File(label="Upload Video/Audio File")
language_input = gr.Dropdown(["en", "es", "fr", "zh"], label="Select Language") # Language codes
process_mode = gr.Radio(choices=[("Transcription Only", 1),("Transcription with Premium Voice",2),("Transcription with Voice Clone", 3)],label="Choose Processing Type",value=1)
submit_button = gr.Button("Post and Process")
with gr.Column(scale=8):
gr.Markdown("## Edit Translations")
# Editable JSON Data
editable_table = gr.Dataframe(
value=[], # Default to an empty list to avoid undefined values
headers=["start", "original", "translated", "end", "speaker"],
datatype=["number", "str", "str", "number", "str"],
row_count=1, # Initially empty
col_count=5,
interactive=[False, True, True, False, False], # Control editability
label="Edit Translations",
wrap=True # Enables text wrapping if supported
)
save_changes_button = gr.Button("Save Changes")
processed_video_output = gr.File(label="Download Processed Video", interactive=True) # Download button
elapsed_time_display = gr.Textbox(label="Elapsed Time", lines=1, interactive=False)
with gr.Column(scale=1):
gr.Markdown("**Feedback**")
feedback_input = gr.Textbox(
placeholder="Leave your feedback here...",
label=None,
lines=3,
)
feedback_btn = gr.Button("Submit Feedback")
response_message = gr.Textbox(label=None, lines=1, interactive=False)
db_download = gr.File(label="Download Database File", visible=False)
# Link the feedback handling
def feedback_submission(feedback):
message, file_path = handle_feedback(feedback)
if file_path:
return message, gr.update(value=file_path, visible=True)
return message, gr.update(visible=False)
save_changes_button.click(
update_translations,
inputs=[file_input, editable_table, process_mode],
outputs=[processed_video_output, elapsed_time_display]
)
submit_button.click(
upload_and_manage,
inputs=[file_input, language_input, process_mode],
outputs=[editable_table, processed_video_output, elapsed_time_display]
)
# Connect submit button to save_feedback_db function
feedback_btn.click(
feedback_submission,
inputs=[feedback_input],
outputs=[response_message, db_download]
)
return demo
tts_model = None
# Launch the Gradio interface
demo = build_interface()
demo.launch() |