File size: 28,813 Bytes
cd89a99
e84d196
cd89a99
 
 
 
 
 
 
14d19ae
e1b0b64
cd89a99
 
 
 
 
 
 
 
e1b0b64
fd45462
cd89a99
 
 
 
 
9ecc376
cd89a99
bc61e6f
e106937
 
a4f3333
 
 
 
9666193
 
66e3856
 
 
 
a4f3333
 
 
65983b3
a4f3333
 
 
 
 
 
 
 
 
 
cd89a99
515a3f9
 
e106937
 
 
3458dd7
51a7dcd
39837b9
 
 
 
 
 
 
 
 
 
dc0837c
39837b9
 
dc0837c
39837b9
fd45462
39837b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd89a99
39837b9
 
 
2e011e4
39837b9
 
 
 
2e011e4
39837b9
 
 
 
 
 
 
 
 
 
 
2e011e4
39837b9
 
 
 
2e011e4
39837b9
 
 
2e011e4
39837b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd89a99
39837b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edf0e1c
39837b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e49fd50
39837b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f67d3e8
39837b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd89a99
39837b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd89a99
39837b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
import numpy as np
import re
import concurrent.futures
import gradio as gr
from datetime import datetime
import random
import moviepy
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
from moviepy.editor import (
    ImageClip,
    VideoFileClip,
    TextClip, 
    CompositeVideoClip,
    CompositeAudioClip,
    AudioFileClip,
    concatenate_videoclips,
    concatenate_audioclips
)
from PIL import Image, ImageDraw, ImageFont
from moviepy.audio.AudioClip import AudioArrayClip
import subprocess
import speech_recognition as sr
import json
from nltk.tokenize import sent_tokenize
import logging
import whisperx
import time
import os
import openai 
from openai import OpenAI 
import traceback
from TTS.api import TTS
import torch
from TTS.tts.configs.xtts_config import XttsConfig
from pydub import AudioSegment
from pyannote.audio import Pipeline
import traceback
import wave

logger = logging.getLogger(__name__)

# Accept license terms for Coqui XTTS
os.environ["COQUI_TOS_AGREED"] = "1"
# torch.serialization.add_safe_globals([XttsConfig])

# Load XTTS model
try:
    print("πŸ”„ Loading XTTS model...")
    tts = TTS(model_name="tts_models/multilingual/multi-dataset/xtts_v2")
    print("βœ… XTTS model loaded successfully.")
except Exception as e:
    print("❌ Error loading XTTS model:")
    traceback.print_exc()
    raise e

logger.info(gr.__version__)

client = OpenAI(
    api_key= os.environ.get("openAI_api_key"),  # This is the default and can be omitted
)
hf_api_key = os.environ.get("hf_token")


# def silence(duration, fps=44100):
#     """
#     Returns a silent AudioClip of the specified duration.
#     """
#     return AudioArrayClip(np.zeros((int(fps*duration), 2)), fps=fps)

# def count_words_or_characters(text):
#     # Count non-Chinese words
#     non_chinese_words = len(re.findall(r'\b[a-zA-Z0-9]+\b', text))
    
#     # Count Chinese characters
#     chinese_chars = len(re.findall(r'[\u4e00-\u9fff]', text))
    
#     return non_chinese_words + chinese_chars
    
# # Define the passcode
# PASSCODE = "show_feedback_db"

# css = """
# /* Adjust row height */
# .dataframe-container tr {
#     height: 50px !important; 
# }

# /* Ensure text wrapping and prevent overflow */
# .dataframe-container td {
#     white-space: normal !important; 
#     word-break: break-word !important;
# }

# /* Set column widths */
# [data-testid="block-container"] .scrolling-dataframe th:nth-child(1), 
# [data-testid="block-container"] .scrolling-dataframe td:nth-child(1) {
#     width: 6%; /* Start column */
# }

# [data-testid="block-container"] .scrolling-dataframe th:nth-child(2), 
# [data-testid="block-container"] .scrolling-dataframe td:nth-child(2) {
#     width: 47%; /* Original text */
# }

# [data-testid="block-container"] .scrolling-dataframe th:nth-child(3), 
# [data-testid="block-container"] .scrolling-dataframe td:nth-child(3) {
#     width: 47%; /* Translated text */
# }

# [data-testid="block-container"] .scrolling-dataframe th:nth-child(4), 
# [data-testid="block-container"] .scrolling-dataframe td:nth-child(4) {
#     display: none !important;
# }
# """

# # Function to save feedback or provide access to the database file
# def handle_feedback(feedback):
#     feedback = feedback.strip()  # Clean up leading/trailing whitespace
#     if not feedback:
#         return "Feedback cannot be empty.", None

#     if feedback == PASSCODE:
#         # Provide access to the feedback.db file
#         return "Access granted! Download the database file below.", "feedback.db"
#     else:
#         # Save feedback to the database
#         with sqlite3.connect("feedback.db") as conn:
#             cursor = conn.cursor()
#             cursor.execute("CREATE TABLE IF NOT EXISTS studio_feedback (id INTEGER PRIMARY KEY, comment TEXT)")
#             cursor.execute("INSERT INTO studio_feedback (comment) VALUES (?)", (feedback,))
#             conn.commit()
#         return "Thank you for your feedback!", None

# # Configure logging
# logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s")
# logger = logging.getLogger(__name__)
# logger.info(f"MoviePy Version: {moviepy.__version__}")

# # def segment_background_audio(audio_path, output_path="background_segments.wav"):
# #     # Step 2: Initialize pyannote voice activity detection pipeline (you need Hugging Face token)
# #     pipeline = Pipeline.from_pretrained(
# #         "pyannote/voice-activity-detection",
# #         use_auth_token=hf_api_key
# #     )
# #     # Step 3: Run VAD to get speech segments
# #     vad_result = pipeline(audio_path)
# #     print(f"Detected speech segments: {vad_result}")

# #     # Step 4: Load full audio and subtract speech segments
# #     full_audio = AudioSegment.from_wav(audio_path)
# #     background_audio = AudioSegment.silent(duration=len(full_audio))

# #     for segment in vad_result.itersegments():
# #         start_ms = int(segment.start * 1000)
# #         end_ms = int(segment.end * 1000)
# #         # Remove speech by muting that portion
# #         background_audio = background_audio.overlay(AudioSegment.silent(duration=end_ms - start_ms), position=start_ms)

# #     # Step 5: Subtract background_audio from full_audio
# #     result_audio = full_audio.overlay(background_audio)

# #     # Step 6: Export non-speech segments
# #     result_audio.export(output_path, format="wav")
# #     print(f"Saved non-speech (background) audio to: {output_path}")

# #     return True

# def transcribe_video_with_speakers(video_path):
#     # Extract audio from video
#     video = VideoFileClip(video_path)
#     audio_path = "audio.wav"
#     video.audio.write_audiofile(audio_path)
#     logger.info(f"Audio extracted from video: {audio_path}")

#     # segment_result = segment_background_audio(audio_path)
#     # print(f"Saved non-speech (background) audio to local")
    
#     # Set up device
#     device = "cuda" if torch.cuda.is_available() else "cpu"
#     logger.info(f"Using device: {device}")
    
#     try:
#         # Load a medium model with float32 for broader compatibility
#         model = whisperx.load_model("medium", device=device, compute_type="float32")
#         logger.info("WhisperX model loaded")
    
#         # Transcribe
#         result = model.transcribe(audio_path, chunk_size=5, print_progress = True)
#         logger.info("Audio transcription completed")

#         # Get the detected language
#         detected_language = result["language"]
#         logger.debug(f"Detected language: {detected_language}")
#         # Alignment
#         model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
#         result = whisperx.align(result["segments"], model_a, metadata, audio_path, device)
#         logger.info("Transcription alignment completed")
    
#         # Diarization (works independently of Whisper model size)
#         diarize_model = whisperx.DiarizationPipeline(use_auth_token=hf_api_key, device=device)
#         diarize_segments = diarize_model(audio_path)
#         logger.info("Speaker diarization completed")
    
#         # Assign speakers
#         result = whisperx.assign_word_speakers(diarize_segments, result)
#         logger.info("Speakers assigned to transcribed segments")
    
#     except Exception as e:
#         logger.error(f"❌ WhisperX pipeline failed: {e}")

#     # Extract timestamps, text, and speaker IDs
#     transcript_with_speakers = [
#         {
#             "start": segment["start"],
#             "end": segment["end"],
#             "text": segment["text"],
#             "speaker": segment["speaker"]
#         }
#         for segment in result["segments"]
#     ]

#     # Collect audio for each speaker
#     speaker_audio = {}
#     for segment in result["segments"]:
#         speaker = segment["speaker"]
#         if speaker not in speaker_audio:
#             speaker_audio[speaker] = []
#         speaker_audio[speaker].append((segment["start"], segment["end"]))

#     # Collapse and truncate speaker audio
#     speaker_sample_paths = {}
#     audio_clip = AudioFileClip(audio_path)
#     for speaker, segments in speaker_audio.items():
#         speaker_clips = [audio_clip.subclip(start, end) for start, end in segments]
#         combined_clip = concatenate_audioclips(speaker_clips)
#         truncated_clip = combined_clip.subclip(0, min(30, combined_clip.duration))
#         sample_path = f"speaker_{speaker}_sample.wav"
#         truncated_clip.write_audiofile(sample_path)
#         speaker_sample_paths[speaker] = sample_path
#         logger.info(f"Created sample for {speaker}: {sample_path}")

#     # Clean up
#     video.close()
#     audio_clip.close()
#     os.remove(audio_path)

#     return transcript_with_speakers, detected_language

# # Function to get the appropriate translation model based on target language
# def get_translation_model(source_language, target_language):
#     """
#     Get the translation model based on the source and target language.

#     Parameters:
#     - target_language (str): The language to translate the content into (e.g., 'es', 'fr').
#     - source_language (str): The language of the input content (default is 'en' for English).
    
#     Returns:
#     - str: The translation model identifier.
#     """
#     # List of allowable languages
#     allowable_languages = ["en", "es", "fr", "zh", "de", "it", "pt", "ja", "ko", "ru"]

#     # Validate source and target languages
#     if source_language not in allowable_languages:
#         logger.debug(f"Invalid source language '{source_language}'. Supported languages are: {', '.join(allowable_languages)}")
#         # Return a default model if source language is invalid
#         source_language = "en"  # Default to 'en'

#     if target_language not in allowable_languages:
#         logger.debug(f"Invalid target language '{target_language}'. Supported languages are: {', '.join(allowable_languages)}")
#         # Return a default model if target language is invalid
#         target_language = "zh"  # Default to 'zh'

#     if source_language == target_language:
#         source_language = "en"  # Default to 'en'
#         target_language = "zh"  # Default to 'zh'

#     # Return the model using string concatenation
#     return f"Helsinki-NLP/opus-mt-{source_language}-{target_language}"

# def translate_single_entry(entry, translator):
#     original_text = entry["text"]
#     translated_text = translator(original_text)[0]['translation_text']
#     return {
#         "start": entry["start"],
#         "original": original_text,
#         "translated": translated_text,
#         "end": entry["end"],
#         "speaker": entry["speaker"]
#     }

# def translate_text(transcription_json, source_language, target_language):
#     # Load the translation model for the specified target language
#     translation_model_id = get_translation_model(source_language, target_language)
#     logger.debug(f"Translation model: {translation_model_id}")
#     translator = pipeline("translation", model=translation_model_id)

#     # Use ThreadPoolExecutor to parallelize translations
#     with concurrent.futures.ThreadPoolExecutor() as executor:
#         # Submit all translation tasks and collect results
#         translate_func = lambda entry: translate_single_entry(entry, translator)
#         translated_json = list(executor.map(translate_func, transcription_json))

#     # Sort the translated_json by start time
#     translated_json.sort(key=lambda x: x["start"])

#     # Log the components being added to translated_json
#     for entry in translated_json:
#         logger.debug("Added to translated_json: start=%s, original=%s, translated=%s, end=%s, speaker=%s",
#                      entry["start"], entry["original"], entry["translated"], entry["end"], entry["speaker"])

#     return translated_json

# def update_translations(file, edited_table, mode):
#     """
#     Update the translations based on user edits in the Gradio Dataframe.
#     """
#     output_video_path = "output_video.mp4"
#     logger.debug(f"Editable Table: {edited_table}")

#     if file is None:
#         logger.info("No file uploaded. Please upload a video/audio file.")
#         return None, [], None, "No file uploaded. Please upload a video/audio file."
        
#     try:
#         start_time = time.time()  # Start the timer

#         # Convert the edited_table (list of lists) back to list of dictionaries
#         updated_translations = [
#             {
#                 "start": row["start"],  # Access by column name
#                 "original": row["original"],
#                 "translated": row["translated"],
#                 "end": row["end"]
#             }
#             for _, row in edited_table.iterrows()
#         ]

#         # Call the function to process the video with updated translations
#         add_transcript_voiceover(file.name, updated_translations, output_video_path, mode=="Transcription with Voiceover")

#         # Calculate elapsed time
#         elapsed_time = time.time() - start_time
#         elapsed_time_display = f"Updates applied successfully in {elapsed_time:.2f} seconds."

#         return output_video_path, elapsed_time_display

#     except Exception as e:
#         raise ValueError(f"Error updating translations: {e}")

# def create_subtitle_clip_pil(text, start_time, end_time, video_width, video_height, font_path):
#     try:
#         subtitle_width = int(video_width * 0.8)
#         subtitle_font_size = int(video_height // 20)
#         font = ImageFont.truetype(font_path, subtitle_font_size)

#         dummy_img = Image.new("RGBA", (subtitle_width, 1), (0, 0, 0, 0))
#         draw = ImageDraw.Draw(dummy_img)

#         lines = []
#         line = ""
#         for word in text.split():
#             test_line = f"{line} {word}".strip()
#             bbox = draw.textbbox((0, 0), test_line, font=font)
#             w = bbox[2] - bbox[0]
#             if w <= subtitle_width - 10:
#                 line = test_line
#             else:
#                 lines.append(line)
#                 line = word
#         lines.append(line)

#         line_heights = [draw.textbbox((0, 0), l, font=font)[3] - draw.textbbox((0, 0), l, font=font)[1] for l in lines]
#         total_height = sum(line_heights) + (len(lines) - 1) * 5
#         img = Image.new("RGBA", (subtitle_width, total_height), (0, 0, 0, 0))
#         draw = ImageDraw.Draw(img)

#         y = 0
#         for idx, line in enumerate(lines):
#             bbox = draw.textbbox((0, 0), line, font=font)
#             w = bbox[2] - bbox[0]
#             draw.text(((subtitle_width - w) // 2, y), line, font=font, fill="yellow")
#             y += line_heights[idx] + 5
            
#         img_np = np.array(img)  # <- βœ… Fix: convert to NumPy
#         txt_clip = ImageClip(img_np).set_start(start_time).set_duration(end_time - start_time).set_position("bottom").set_opacity(0.8)
#         return txt_clip
#     except Exception as e:
#         logger.error(f"\u274c Failed to create subtitle clip: {e}")
#         return None

# def process_entry(entry, i, video_width, video_height, add_voiceover, target_language, font_path, speaker_sample_paths=None):
#     logger.debug(f"Processing entry {i}: {entry}")
#     error_message = None

#     try:
#         txt_clip = create_subtitle_clip_pil(entry["translated"], entry["start"], entry["end"], video_width, video_height, font_path)
#     except Exception as e:
#         error_message = f"❌ Failed to create subtitle clip for entry {i}: {e}"
#         logger.error(error_message)
#         txt_clip = None

#     audio_segment = None
#     if add_voiceover:
#         try:
#             segment_audio_path = f"segment_{i}_voiceover.wav"
#             desired_duration = entry["end"] - entry["start"]
#             speaker = entry.get("speaker", "default")
#             speaker_wav_path = f"speaker_{speaker}_sample.wav"

#             output_path, status_msg, tts_error = generate_voiceover_clone([entry], desired_duration, target_language, speaker_wav_path, segment_audio_path)

#             if tts_error:
#                 error_message = error_message + " | " + tts_error if error_message else tts_error

#             if not output_path or not os.path.exists(segment_audio_path):
#                 raise FileNotFoundError(f"Voiceover file not generated at: {segment_audio_path}")

#             audio_clip = AudioFileClip(segment_audio_path)
#             logger.debug(f"Audio clip duration: {audio_clip.duration}, Desired duration: {desired_duration}")

#             if audio_clip.duration < desired_duration:
#                 silence_duration = desired_duration - audio_clip.duration
#                 audio_clip = concatenate_audioclips([audio_clip, silence(duration=silence_duration)])
#                 logger.info(f"Padded audio with {silence_duration} seconds of silence.")

#             audio_segment = audio_clip.set_start(entry["start"]).set_duration(desired_duration)

#         except Exception as e:
#             err = f"❌ Failed to generate audio segment for entry {i}: {e}"
#             logger.error(err)
#             error_message = error_message + " | " + err if error_message else err
#             audio_segment = None

#     return i, txt_clip, audio_segment, error_message
    
# def add_transcript_voiceover(video_path, translated_json, output_path, add_voiceover=False, target_language="en", speaker_sample_paths=None):
#     video = VideoFileClip(video_path)
#     font_path = "./NotoSansSC-Regular.ttf"

#     text_clips = []
#     audio_segments = []
#     error_messages = []

#     with concurrent.futures.ThreadPoolExecutor() as executor:
#         futures = [executor.submit(process_entry, entry, i, video.w, video.h, add_voiceover, target_language, font_path, speaker_sample_paths)
#                    for i, entry in enumerate(translated_json)]

#         results = []
#         for future in concurrent.futures.as_completed(futures):
#             try:
#                 i, txt_clip, audio_segment, error = future.result()
#                 results.append((i, txt_clip, audio_segment))
#                 if error:
#                     error_messages.append(f"[Entry {i}] {error}")
#             except Exception as e:
#                 err = f"❌ Unexpected error in future result: {e}"
#                 logger.error(err)
#                 error_messages.append(err)

#     # Sort by entry index to ensure order
#     results.sort(key=lambda x: x[0])
#     text_clips = [clip for _, clip, _ in results if clip]
#     if add_voiceover:
#         audio_segments = [segment for _, _, segment in results if segment]

#     final_video = CompositeVideoClip([video] + text_clips)

#     if add_voiceover:
#         if audio_segments:
#             final_audio = CompositeAudioClip(audio_segments).set_duration(video.duration)
#             final_video = final_video.set_audio(final_audio)
#         else:
#             logger.warning("⚠️ No audio segments available. Adding silent fallback.")
#             silent_audio = AudioClip(lambda t: 0, duration=video.duration)
#             final_video = final_video.set_audio(silent_audio)

#     logger.info(f"Saving the final video to: {output_path}")
#     final_video.write_videofile(output_path, codec="libx264", audio_codec="aac")

#     logger.info("Video processing completed successfully.")

#     # Optional: return errors
#     if error_messages:
#         logger.warning("⚠️ Errors encountered during processing:")
#         for msg in error_messages:
#             logger.warning(msg)

#     return error_messages

# # Initialize TTS model only once (outside the function)
# tts = TTS(model_name="tts_models/multilingual/multi-dataset/xtts_v2")

# def generate_voiceover_clone(translated_json, desired_duration, target_language, speaker_wav_path, output_audio_path):
#     try:
#         full_text = " ".join(entry["translated"] for entry in translated_json if "translated" in entry and entry["translated"].strip())
#         if not full_text.strip():
#             msg = "❌ Translated text is empty."
#             logger.error(msg)
#             return None, msg, msg

#         if not speaker_wav_path or not os.path.exists(speaker_wav_path):
#             msg = f"❌ Speaker audio not found: {speaker_wav_path}"
#             logger.error(msg)
#             return None, msg, msg

#         # # Truncate text based on max token assumption (~60 tokens)
#         # MAX_TTS_TOKENS = 60
#         # tokens = full_text.split()  # crude token count
#         # if len(tokens) > MAX_TTS_TOKENS:
#         #     logger.warning(f"⚠️ Text too long for TTS model ({len(tokens)} tokens). Truncating to {MAX_TTS_TOKENS} tokens.")
#         #     full_text = " ".join(tokens[:MAX_TTS_TOKENS])

#         speed_tts = calibrated_speed(full_text, desired_duration)
#         tts.tts_to_file(
#             text=full_text,
#             speaker_wav=speaker_wav_path,
#             language=target_language,
#             file_path=output_audio_path,
#             speed=speed_tts,
#             split_sentences=True
#         )

#         if not os.path.exists(output_audio_path):
#             msg = f"❌ Voiceover file not generated at: {output_audio_path}"
#             logger.error(msg)
#             return None, msg, msg

#         msg = "βœ… Voice cloning completed successfully."
#         logger.info(msg)
#         return output_audio_path, msg, None

#     except Exception as e:
#         err_msg = f"❌ An error occurred: {str(e)}"
#         logger.error("❌ Error during voice cloning:")
#         logger.error(traceback.format_exc())
#         return None, err_msg, err_msg

# def calibrated_speed(text, desired_duration):
#     """
#     Compute a speed factor to help TTS fit audio into desired duration,
#     using a simple truncated linear function of characters per second.
#     """
#     char_count = len(text.strip())
#     if char_count == 0 or desired_duration <= 0:
#         return 1.0  # fallback

#     cps = char_count / desired_duration  # characters per second

#     # Truncated linear mapping
#     if cps < 10:
#         return 1.0
#     elif cps > 25:
#         return 1.4
#     else:
#         # Linearly scale between cps 10 -> 25 and speed 1.0 -> 1.3
#         slope = (1.4 - 1.0) / (25 - 10)
#         return 1.0 + slope * (cps - 10)


# def upload_and_manage(file, target_language, mode="transcription"):
#     if file is None:
#         logger.info("No file uploaded. Please upload a video/audio file.")
#         return None, [], None, "No file uploaded. Please upload a video/audio file."

#     try:
#         start_time = time.time()  # Start the timer
#         logger.info(f"Started processing file: {file.name}")

#         # Define paths for audio and output files
#         audio_path = "audio.wav"
#         output_video_path = "output_video.mp4"
#         voiceover_path = "voiceover.wav"
#         logger.info(f"Using audio path: {audio_path}, output video path: {output_video_path}, voiceover path: {voiceover_path}")

#         # Step 1: Transcribe audio from uploaded media file and get timestamps
#         logger.info("Transcribing audio...")
#         transcription_json, source_language = transcribe_video_with_speakers(file.name)
#         logger.info(f"Transcription completed. Detected source language: {source_language}")

#         # Step 2: Translate the transcription
#         logger.info(f"Translating transcription from {source_language} to {target_language}...")
#         translated_json = translate_text(transcription_json, source_language, target_language)
#         logger.info(f"Translation completed. Number of translated segments: {len(translated_json)}")

#         # Step 3: Add transcript to video based on timestamps
#         logger.info("Adding translated transcript to video...")
#         add_transcript_voiceover(file.name, translated_json, output_video_path, mode == "Transcription with Voiceover", target_language)
#         logger.info(f"Transcript added to video. Output video saved at {output_video_path}")

#         # Convert translated JSON into a format for the editable table
#         logger.info("Converting translated JSON into editable table format...")
#         editable_table = [
#             [float(entry["start"]), entry["original"], entry["translated"], float(entry["end"]), entry["speaker"]]
#             for entry in translated_json
#         ]

#         # Calculate elapsed time
#         elapsed_time = time.time() - start_time
#         elapsed_time_display = f"Processing completed in {elapsed_time:.2f} seconds."
#         logger.info(f"Processing completed in {elapsed_time:.2f} seconds.")

#         return translated_json, editable_table, output_video_path, elapsed_time_display

#     except Exception as e:
#         logger.error(f"An error occurred: {str(e)}")
#         return None, [], None, f"An error occurred: {str(e)}"
# # Gradio Interface with Tabs
# def build_interface():
#     with gr.Blocks(css=css) as demo:
#         gr.Markdown("## Video Localization")
#         with gr.Row():
#             with gr.Column(scale=4):
#                 file_input = gr.File(label="Upload Video/Audio File")
#                 language_input = gr.Dropdown(["en", "es", "fr", "zh"], label="Select Language")  # Language codes
#                 process_mode = gr.Radio(choices=["Transcription", "Transcription with Voiceover"], label="Choose Processing Type", value="Transcription")
#                 submit_button = gr.Button("Post and Process")
#                 editable_translations = gr.State(value=[])

#             with gr.Column(scale=8):
#                 gr.Markdown("## Edit Translations")
                
#                 # Editable JSON Data
#                 editable_table = gr.Dataframe(
#                     value=[],  # Default to an empty list to avoid undefined values
#                     headers=["start", "original", "translated", "end", "speaker"],
#                     datatype=["number", "str", "str", "number", "str"],
#                     row_count=1,  # Initially empty
#                     col_count=5,
#                     interactive=[False, True, True, False, False],  # Control editability
#                     label="Edit Translations",
#                     wrap=True  # Enables text wrapping if supported
#                 )
#                 save_changes_button = gr.Button("Save Changes")
#                 processed_video_output = gr.File(label="Download Processed Video", interactive=True)  # Download button
#                 elapsed_time_display = gr.Textbox(label="Elapsed Time", lines=1, interactive=False)

#             with gr.Column(scale=1):
#                 gr.Markdown("**Feedback**")
#                 feedback_input = gr.Textbox(
#                     placeholder="Leave your feedback here...",
#                     label=None,
#                     lines=3,
#                 )
#                 feedback_btn = gr.Button("Submit Feedback")
#                 response_message = gr.Textbox(label=None, lines=1, interactive=False)
#                 db_download = gr.File(label="Download Database File", visible=False)
            
#                 # Link the feedback handling
#                 def feedback_submission(feedback):
#                     message, file_path = handle_feedback(feedback)
#                     if file_path:
#                         return message, gr.update(value=file_path, visible=True)
#                     return message, gr.update(visible=False)            

#             save_changes_button.click(
#                 update_translations, 
#                 inputs=[file_input, editable_table, process_mode],
#                 outputs=[processed_video_output, elapsed_time_display]
#             )

#             submit_button.click(
#                 upload_and_manage, 
#                 inputs=[file_input, language_input, process_mode], 
#                 outputs=[editable_translations, editable_table, processed_video_output, elapsed_time_display]
#             )

#             # Connect submit button to save_feedback_db function
#             feedback_btn.click(
#                 feedback_submission, 
#                 inputs=[feedback_input], 
#                 outputs=[response_message, db_download]
#             )

#     return demo

# # Launch the Gradio interface
# demo = build_interface()
# demo.launch()

import gradio as gr

def dummy_func(x):
    return x, "Success"

with gr.Blocks() as demo:
    inp = gr.Textbox()
    out1 = gr.Textbox()
    out2 = gr.Textbox()
    btn = gr.Button("Run")
    btn.click(dummy_func, inputs=inp, outputs=[out1, out2])

demo.launch()