File size: 21,337 Bytes
c5caa4d ba43985 9672255 e793ef5 eea784a fe6110a c7ac97c 5cd52ef 219f1d3 9f195d1 219f1d3 a243602 123fe98 219f1d3 7e6d11d 47f955a 6319910 9d68248 1acdf97 d5c151e 9c80aa8 cb60a18 5a5be24 82ed6ca 7e6d11d ba43985 7e6d11d e26face 1efc480 4ad4ad6 e26face 0c64b03 1247d9c 0c64b03 e26face 1acdf97 4ad4ad6 1acdf97 9d68248 219f1d3 9d68248 9c80aa8 a75c073 9d68248 9c80aa8 1a7629c ba43985 1a7629c ba43985 1a7629c ba43985 1a7629c 8ff8844 9d68248 2b22edd 8ff8844 a6cf7f8 0ab292a 15d6241 0ab292a 15d6241 8ff8844 9d68248 8ff8844 1acdf97 2b22edd 9d68248 15d6241 0ab292a 15d6241 07652a2 9d68248 b31c13c 4831c39 88cf326 4831c39 3734b02 7d3e4d6 3734b02 a0d563e 4831c39 c9e6abe 88cf326 4278613 88cf326 4278613 88cf326 b31c13c 88cf326 c9e6abe 4831c39 936bad0 9672255 99fac43 936bad0 99fac43 9672255 ba43985 9d659cd dfa859a 9d659cd dfa859a 9d659cd b0e3f63 9672255 39680fc 9672255 18bcebb 99fac43 18bcebb 99fac43 936bad0 99fac43 39680fc 99fac43 39680fc 99fac43 39680fc 99fac43 39680fc 18bcebb dfa859a a39906d 39680fc aa5254a dfa859a a813e74 18bcebb 10fc6a1 18bcebb 10fc6a1 18bcebb 83b77eb 5a5be24 ba43985 81b16c8 ba43985 81b16c8 ba43985 5a5be24 ba43985 5a5be24 ba43985 5a5be24 8ff8844 eea784a 858faf9 c9e6abe eea784a c9e6abe 858faf9 9d68248 c9e6abe 10fc6a1 858faf9 c7ac97c 10fc6a1 858faf9 8ff8844 858faf9 10fc6a1 858faf9 8ff8844 858faf9 eea784a 10fc6a1 858faf9 74d8190 858faf9 61572ab 10fc6a1 858faf9 c9e6abe 8f5743b c9e6abe cb60a18 c9e6abe 858faf9 c9e6abe 858faf9 c9e6abe eea784a 158d2de ffcb48f e5a54e6 65be1ca 486838c 65be1ca aefab09 b587d5e e5a54e6 3734b02 4831c39 2616c58 4831c39 b82606e 4831c39 158d2de 3734b02 cb60a18 3734b02 844f5c9 f4793ba cb60a18 f4793ba e26face 844f5c9 e26face cb60a18 e26face 3734b02 c9e6abe 013b7ab cb60a18 3734b02 b587d5e c9e6abe 830dab9 cb60a18 b587d5e 830dab9 82ed6ca e26face 82ed6ca e26face 82ed6ca ffcb48f eea784a e793ef5 9d68248 eea784a 9d68248 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 |
import numpy as np
import re
import concurrent.futures
import gradio as gr
from datetime import datetime
import random
import moviepy
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
from moviepy import (
VideoFileClip,
TextClip,
CompositeVideoClip,
CompositeAudioClip,
AudioFileClip,
concatenate_videoclips,
concatenate_audioclips
)
from moviepy.audio.AudioClip import AudioArrayClip
from gtts import gTTS
import subprocess
import speech_recognition as sr
import json
from nltk.tokenize import sent_tokenize
import logging
from textblob import TextBlob
import whisper
import time
import os
import openai
from openai import OpenAI
client = OpenAI(
api_key= os.environ.get("openAI_api_key"), # This is the default and can be omitted
)
def silence(duration, fps=44100):
"""
Returns a silent AudioClip of the specified duration.
"""
return AudioArrayClip(np.zeros((int(fps*duration), 2)), fps=fps)
def count_words_or_characters(text):
# Count non-Chinese words
non_chinese_words = len(re.findall(r'\b[a-zA-Z0-9]+\b', text))
# Count Chinese characters
chinese_chars = len(re.findall(r'[\u4e00-\u9fff]', text))
return non_chinese_words + chinese_chars
# Define the passcode
PASSCODE = "show_feedback_db"
css = """
/* Adjust row height */
.dataframe-container tr {
height: 50px !important;
}
/* Ensure text wrapping and prevent overflow */
.dataframe-container td {
white-space: normal !important;
word-break: break-word !important;
}
/* Set column widths */
[data-testid="block-container"] .scrolling-dataframe th:nth-child(1),
[data-testid="block-container"] .scrolling-dataframe td:nth-child(1) {
width: 6%; /* Start column */
}
[data-testid="block-container"] .scrolling-dataframe th:nth-child(2),
[data-testid="block-container"] .scrolling-dataframe td:nth-child(2) {
width: 47%; /* Original text */
}
[data-testid="block-container"] .scrolling-dataframe th:nth-child(3),
[data-testid="block-container"] .scrolling-dataframe td:nth-child(3) {
width: 47%; /* Translated text */
}
[data-testid="block-container"] .scrolling-dataframe th:nth-child(4),
[data-testid="block-container"] .scrolling-dataframe td:nth-child(4) {
display: none !important;
}
"""
# Function to save feedback or provide access to the database file
def handle_feedback(feedback):
feedback = feedback.strip() # Clean up leading/trailing whitespace
if not feedback:
return "Feedback cannot be empty.", None
if feedback == PASSCODE:
# Provide access to the feedback.db file
return "Access granted! Download the database file below.", "feedback.db"
else:
# Save feedback to the database
with sqlite3.connect("feedback.db") as conn:
cursor = conn.cursor()
cursor.execute("CREATE TABLE IF NOT EXISTS studio_feedback (id INTEGER PRIMARY KEY, comment TEXT)")
cursor.execute("INSERT INTO studio_feedback (comment) VALUES (?)", (feedback,))
conn.commit()
return "Thank you for your feedback!", None
# Configure logging
logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
logger.info(f"MoviePy Version: {moviepy.__version__}")
def transcribe_video(video_path):
# Load the video file and extract audio
video = VideoFileClip(video_path)
audio_path = "audio.wav"
video.audio.write_audiofile(audio_path)
# Load Whisper model
model = whisper.load_model("large") # Options: tiny, base, small, medium, large
# Transcribe with Whisper
result = model.transcribe(audio_path, word_timestamps=True)
# Extract timestamps, text, and compute word count
total_words = 0
total_duration = 0
transcript_with_timestamps = []
for segment in result["segments"]:
start = segment["start"]
end = segment["end"]
text = segment["text"]
transcript_with_timestamps.append({
"start": start,
"end": end,
"text": text
})
word_count = count_words_or_characters(text)
total_words += word_count
total_duration += (end - start)
# Compute average words per second
avg_words_per_second = total_words / total_duration if total_duration > 0 else 0
# Add total statistics to the result
transcript_stats = {
"total_words": total_words,
"total_duration": total_duration,
"avg_words_per_second": avg_words_per_second
}
logger.debug(f"Transcription stats:\n{transcript_stats}")
# Get the detected language
detected_language = result["language"]
logger.debug(f"Detected language:\n{detected_language}")
return transcript_with_timestamps, detected_language
# Function to get the appropriate translation model based on target language
def get_translation_model(source_language, target_language):
"""
Get the translation model based on the source and target language.
Parameters:
- target_language (str): The language to translate the content into (e.g., 'es', 'fr').
- source_language (str): The language of the input content (default is 'en' for English).
Returns:
- str: The translation model identifier.
"""
# List of allowable languages
allowable_languages = ["en", "es", "fr", "zh", "de", "it", "pt", "ja", "ko", "ru"]
# Validate source and target languages
if source_language not in allowable_languages:
logger.debug(f"Invalid source language '{source_language}'. Supported languages are: {', '.join(allowable_languages)}")
# Return a default model if source language is invalid
source_language = "en" # Default to 'en'
if target_language not in allowable_languages:
logger.debug(f"Invalid target language '{target_language}'. Supported languages are: {', '.join(allowable_languages)}")
# Return a default model if target language is invalid
target_language = "zh" # Default to 'zh'
if source_language == target_language:
source_language = "en" # Default to 'en'
target_language = "zh" # Default to 'zh'
# Return the model using string concatenation
return f"Helsinki-NLP/opus-mt-{source_language}-{target_language}"
def translate_single_entry(entry, translator):
original_text = entry["text"]
translated_text = translator(original_text)[0]['translation_text']
return {
"start": entry["start"],
"original": original_text,
"translated": translated_text,
"end": entry["end"]
}
def translate_text(transcription_json, source_language, target_language):
# Load the translation model for the specified target language
translation_model_id = get_translation_model(source_language, target_language)
logger.debug(f"Translation model: {translation_model_id}")
translator = pipeline("translation", model=translation_model_id)
# Use ThreadPoolExecutor to parallelize translations
with concurrent.futures.ThreadPoolExecutor() as executor:
# Submit all translation tasks and collect results
translate_func = lambda entry: translate_single_entry(entry, translator)
translated_json = list(executor.map(translate_func, transcription_json))
# Sort the translated_json by start time
translated_json.sort(key=lambda x: x["start"])
# Log the components being added to translated_json
for entry in translated_json:
logger.debug("Added to translated_json: start=%s, original=%s, translated=%s, end=%s",
entry["start"], entry["original"], entry["translated"], entry["end"])
return translated_json
def update_translations(file, edited_table, mode):
"""
Update the translations based on user edits in the Gradio Dataframe.
"""
output_video_path = "output_video.mp4"
logger.debug(f"Editable Table: {edited_table}")
if file is None:
logger.info("No file uploaded. Please upload a video/audio file.")
return None, [], None, "No file uploaded. Please upload a video/audio file."
try:
start_time = time.time() # Start the timer
# Convert the edited_table (list of lists) back to list of dictionaries
updated_translations = [
{
"start": row["start"], # Access by column name
"original": row["original"],
"translated": row["translated"],
"end": row["end"]
}
for _, row in edited_table.iterrows()
]
# Call the function to process the video with updated translations
add_transcript_voiceover(file.name, updated_translations, output_video_path, mode=="Transcription with Voiceover")
# Calculate elapsed time
elapsed_time = time.time() - start_time
elapsed_time_display = f"Updates applied successfully in {elapsed_time:.2f} seconds."
return output_video_path, elapsed_time_display
except Exception as e:
raise ValueError(f"Error updating translations: {e}")
def process_entry(entry, i, video_width, video_height, add_voiceover, target_language):
logger.debug(f"Processing entry {i}: {entry}")
# Create text clip for subtitles
txt_clip = TextClip(
text=entry["translated"],
font="./NotoSansSC-Regular.ttf",
method='caption',
color='yellow',
stroke_color='black', # Border color
stroke_width=2, # Border thickness
font_size=int(video_height // 20),
size=(int(video_width * 0.8), None)
).with_start(entry["start"]).with_duration(entry["end"] - entry["start"]).with_position(('bottom')).with_opacity(0.8)
audio_segment = None
if add_voiceover:
segment_audio_path = f"segment_{i}_voiceover.wav"
desired_duration = entry["end"] - entry["start"]
generate_voiceover_OpenAI([entry], target_language, desired_duration, segment_audio_path)
audio_clip = AudioFileClip(segment_audio_path)
# Get and log all methods in AudioFileClip
logger.info("Methods in AudioFileClip:")
for method in dir(audio_clip):
logger.info(method)
# Log duration of the audio clip and the desired duration for debugging.
logger.debug(f"Audio clip duration: {audio_clip.duration}, Desired duration: {desired_duration}")
if audio_clip.duration < desired_duration:
# Pad with silence if audio is too short
silence_duration = desired_duration - audio_clip.duration
# Concatenate the original audio and silence
audio_clip = concatenate_audioclips([audio_clip, silence(duration=silence_duration)])
logger.info(f"Padded audio with {silence_duration} seconds of silence.")
# Set the audio_segment to the required duration.
audio_segment = audio_clip.with_start(entry["start"]).with_duration(desired_duration)
return i, txt_clip, audio_segment
def add_transcript_voiceover(video_path, translated_json, output_path, add_voiceover=False, target_language="en"):
"""
Add transcript and voiceover to a video, segment by segment.
"""
video = VideoFileClip(video_path)
font_path = "./NotoSansSC-Regular.ttf"
text_clips = []
audio_segments = []
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [executor.submit(process_entry, entry, i, video.w, video.h, add_voiceover, target_language)
for i, entry in enumerate(translated_json)]
# Collect results with original index i
results = []
for future in concurrent.futures.as_completed(futures):
try:
i, txt_clip, audio_segment = future.result()
results.append((i, txt_clip, audio_segment))
except Exception as e:
logger.error(f"Error processing entry: {e}")
# Sort by original index i
results.sort(key=lambda x: x[0])
# Extract sorted clips
text_clips = [clip for i, clip, segment in results]
final_video = CompositeVideoClip([video] + text_clips)
logger.info("Methods in CompositeVideoClip:")
for method in dir(final_video):
logger.info(method)
if add_voiceover:
audio_segments = [segment for i, clip, segment in results if segment is not None]
final_audio = CompositeAudioClip(audio_segments) # Critical fix
final_audio = final_audio.with_duration(video.duration)
final_video = final_video.with_audio(final_audio)
logger.info(f"Saving the final video to: {output_path}")
final_video.write_videofile(output_path, codec="libx264", audio_codec="aac")
logger.info("Video processing completed successfully.")
def generate_voiceover(translated_json, language, output_audio_path):
"""
Generate voiceover from translated text for a given language.
"""
# Concatenate translated text into a single string
full_text = " ".join(entry["translated"] for entry in translated_json)
try:
tts = gTTS(text=full_text, lang=language)
time.sleep(10) # Add a delay of 10 seconds between requests
tts.save(output_audio_path)
except Exception as e:
raise ValueError(f"Error generating voiceover: {e}")
def truncated_linear(x):
if x < 15:
return 1
elif x > 25:
return 1.3
else:
slope = (1.3 - 1) / (25 - 15)
return 1 + slope * (x - 15)
def calculate_speed(text, desired_duration):
# Calculate characters per second
char_count = len(text)
chars_per_second = char_count / (desired_duration + 0.001)
# Apply truncated linear function to get speed
speed = truncated_linear(chars_per_second)
return speed
def generate_voiceover_OpenAI(translated_json, language, desired_duration, output_audio_path):
"""
Generate voiceover from translated text for a given language using OpenAI TTS API.
"""
# Concatenate translated text into a single string
full_text = " ".join(entry["translated"] for entry in translated_json)
# Define the voice based on the language (for now, use 'alloy' as default)
voice = "alloy" # Adjust based on language if needed
# Define the model (use tts-1 for real-time applications)
model = "tts-1"
max_retries = 3
retry_count = 0
while retry_count < max_retries:
try:
speed_tts = calculate_speed(full_text, desired_duration)
# Create the speech using OpenAI TTS API
response = client.audio.speech.create(
model=model,
voice=voice,
input=full_text,
speed=speed_tts
)
# Save the audio to the specified path
with open(output_audio_path, 'wb') as f:
for chunk in response.iter_bytes():
f.write(chunk)
logging.info(f"Voiceover generated successfully for {output_audio_path}")
break
except Exception as e:
retry_count += 1
logging.error(f"Error generating voiceover (retry {retry_count}/{max_retries}): {e}")
time.sleep(5) # Wait 5 seconds before retrying
if retry_count == max_retries:
raise ValueError(f"Failed to generate voiceover after {max_retries} retries.")
def upload_and_manage(file, target_language, mode="transcription"):
if file is None:
logger.info("No file uploaded. Please upload a video/audio file.")
return None, [], None, "No file uploaded. Please upload a video/audio file."
try:
start_time = time.time() # Start the timer
logger.info(f"Started processing file: {file.name}")
# Define paths for audio and output files
audio_path = "audio.wav"
output_video_path = "output_video.mp4"
voiceover_path = "voiceover.wav"
logger.info(f"Using audio path: {audio_path}, output video path: {output_video_path}, voiceover path: {voiceover_path}")
# Step 1: Transcribe audio from uploaded media file and get timestamps
logger.info("Transcribing audio...")
transcription_json, source_language = transcribe_video(file.name)
logger.info(f"Transcription completed. Detected source language: {source_language}")
# Step 2: Translate the transcription
logger.info(f"Translating transcription from {source_language} to {target_language}...")
translated_json = translate_text(transcription_json, source_language, target_language)
logger.info(f"Translation completed. Number of translated segments: {len(translated_json)}")
# Step 3: Add transcript to video based on timestamps
logger.info("Adding translated transcript to video...")
add_transcript_voiceover(file.name, translated_json, output_video_path, mode == "Transcription with Voiceover", target_language)
logger.info(f"Transcript added to video. Output video saved at {output_video_path}")
# Convert translated JSON into a format for the editable table
logger.info("Converting translated JSON into editable table format...")
editable_table = [
[float(entry["start"]), entry["original"], entry["translated"], float(entry["end"])]
for entry in translated_json
]
# Calculate elapsed time
elapsed_time = time.time() - start_time
elapsed_time_display = f"Processing completed in {elapsed_time:.2f} seconds."
logger.info(f"Processing completed in {elapsed_time:.2f} seconds.")
return translated_json, editable_table, output_video_path, elapsed_time_display
except Exception as e:
logger.error(f"An error occurred: {str(e)}")
return None, [], None, f"An error occurred: {str(e)}"
# Gradio Interface with Tabs
def build_interface():
with gr.Blocks(css=css) as demo:
gr.Markdown("## Video Localization")
with gr.Row():
with gr.Column(scale=4):
file_input = gr.File(label="Upload Video/Audio File")
language_input = gr.Dropdown(["en", "es", "fr", "zh"], label="Select Language") # Language codes
process_mode = gr.Radio(choices=["Transcription", "Transcription with Voiceover"], label="Choose Processing Type", value="Transcription")
submit_button = gr.Button("Post and Process")
editable_translations = gr.State(value=[])
with gr.Column(scale=8):
gr.Markdown("## Edit Translations")
# Editable JSON Data
editable_table = gr.Dataframe(
value=[], # Default to an empty list to avoid undefined values
headers=["start", "original", "translated", "end"],
datatype=["number", "str", "str", "number"],
row_count=1, # Initially empty
col_count=4,
interactive=[False, True, True, False], # Control editability
label="Edit Translations",
wrap=True # Enables text wrapping if supported
)
save_changes_button = gr.Button("Save Changes")
processed_video_output = gr.File(label="Download Processed Video", interactive=True) # Download button
elapsed_time_display = gr.Textbox(label="Elapsed Time", lines=1, interactive=False)
with gr.Column(scale=1):
gr.Markdown("**Feedback**")
feedback_input = gr.Textbox(
placeholder="Leave your feedback here...",
label=None,
lines=3,
)
feedback_btn = gr.Button("Submit Feedback")
response_message = gr.Textbox(label=None, lines=1, interactive=False)
db_download = gr.File(label="Download Database File", visible=False)
# Link the feedback handling
def feedback_submission(feedback):
message, file_path = handle_feedback(feedback)
if file_path:
return message, gr.update(value=file_path, visible=True)
return message, gr.update(visible=False)
save_changes_button.click(
update_translations,
inputs=[file_input, editable_table, process_mode],
outputs=[processed_video_output, elapsed_time_display]
)
submit_button.click(
upload_and_manage,
inputs=[file_input, language_input, process_mode],
outputs=[editable_translations, editable_table, processed_video_output, elapsed_time_display]
)
# Connect submit button to save_feedback_db function
feedback_btn.click(
feedback_submission,
inputs=[feedback_input],
outputs=[response_message, db_download]
)
return demo
# Launch the Gradio interface
demo = build_interface()
demo.launch() |