qqwjq1981 commited on
Commit
eea784a
·
verified ·
1 Parent(s): e32bf15

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +71 -32
app.py CHANGED
@@ -1,35 +1,74 @@
1
  import gradio as gr
2
- from transformers import pipeline
3
- import numpy as np
4
- import moviepy.editor as mp
5
-
6
- transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en")
7
- translator = pipeline("translation", model="Helsinki-NLP/opus-mt-en-fr") # Example for English to French
8
-
9
- def transcribe(video_file):
10
- # Load video file and extract audio
11
- audio_file = mp.AudioFileClip(video_file).write_audiofile("temp_audio.wav")
12
- result = transcriber("temp_audio.wav")
13
- return result['text']
14
-
15
- def translate(text):
16
- return translator(text)[0]['translation_text']
17
-
18
- with gr.Blocks() as demo:
19
- gr.Markdown("# Curify Studio Demo")
20
-
21
- with gr.Tab("Transcription"):
22
- video_input = gr.File(label="Upload Video File")
23
- transcribe_output = gr.Textbox(label="Transcription Output", lines=10)
24
- transcribe_button = gr.Button("Transcribe")
25
-
26
- transcribe_button.click(fn=transcribe, inputs=video_input, outputs=transcribe_output)
27
-
28
- with gr.Tab("Translation"):
29
- text_input = gr.Textbox(label="Text to Translate")
30
- translate_output = gr.Textbox(label="Translation Output", lines=10)
31
- translate_button = gr.Button("Translate")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
- translate_button.click(fn=translate, inputs=text_input, outputs=translate_output)
 
 
 
 
 
 
 
34
 
35
- demo.launch(debug=True)
 
 
1
  import gradio as gr
2
+ from datetime import datetime
3
+ import random
4
+
5
+ # Mock functions for platform actions and analytics
6
+ def mock_post_to_platform(platform, content_title):
7
+ return f"Content '{content_title}' successfully posted on {platform}!"
8
+
9
+ def mock_analytics():
10
+ return {
11
+ "YouTube": {"Views": random.randint(1000, 5000), "Engagement Rate": f"{random.uniform(5, 15):.2f}%"},
12
+ "Instagram": {"Views": random.randint(500, 3000), "Engagement Rate": f"{random.uniform(10, 20):.2f}%"},
13
+ }
14
+
15
+ # Core functionalities
16
+ def upload_and_manage(file, platform, language):
17
+ if file is None:
18
+ return "Please upload a video/audio file.", None, None, None
19
+
20
+ # Mock transcription and translation process
21
+ transcription = "This is a sample transcription of the uploaded content."
22
+ translation = f"[{language}] This is a sample translation of the content."
23
+
24
+ # Mock posting action
25
+ post_message = mock_post_to_platform(platform, file.name)
26
+
27
+ # Mock analytics generation
28
+ analytics = mock_analytics()
29
+
30
+ return post_message, transcription, translation, analytics
31
+
32
+ def generate_dashboard(analytics):
33
+ if not analytics:
34
+ return "No analytics available."
35
+
36
+ dashboard = "Platform Analytics:\n"
37
+ for platform, data in analytics.items():
38
+ dashboard += f"\n{platform}:\n"
39
+ for metric, value in data.items():
40
+ dashboard += f" {metric}: {value}\n"
41
+ return dashboard
42
+
43
+ # Gradio Interface with Tabs
44
+ def build_interface():
45
+ with gr.Blocks() as demo:
46
+ with gr.Tab("Content Management"):
47
+ gr.Markdown("## Integrated Content Management")
48
+ with gr.Row():
49
+ file_input = gr.File(label="Upload Video/Audio File")
50
+ platform_input = gr.Dropdown(["YouTube", "Instagram"], label="Select Platform")
51
+ language_input = gr.Dropdown(["English", "Spanish", "French", "Chinese"], label="Select Language")
52
+
53
+ submit_button = gr.Button("Post and Process")
54
+
55
+ with gr.Row():
56
+ post_output = gr.Textbox(label="Posting Status", interactive=False)
57
+ transcription_output = gr.Textbox(label="Transcription", interactive=False)
58
+ translation_output = gr.Textbox(label="Translation", interactive=False)
59
+
60
+ submit_button.click(upload_and_manage,
61
+ inputs=[file_input, platform_input, language_input],
62
+ outputs=[post_output, transcription_output, translation_output, gr.State()])
63
 
64
+ with gr.Tab("Analytics Dashboard"):
65
+ gr.Markdown("## Content Performance Analytics")
66
+ analytics_output = gr.Textbox(label="Dashboard", interactive=False)
67
+ generate_dashboard_button = gr.Button("Generate Dashboard")
68
+
69
+ generate_dashboard_button.click(generate_dashboard, inputs=[gr.State()], outputs=[analytics_output])
70
+
71
+ return demo
72
 
73
+ demo = build_interface()
74
+ demo.launch()