File size: 11,970 Bytes
e793ef5
eea784a
 
c7ac97c
 
219f1d3
 
 
 
 
 
 
 
6319910
9d68248
 
 
1acdf97
d5c151e
9c80aa8
 
82ed6ca
 
e26face
 
 
 
 
 
 
 
 
 
 
 
 
 
0c64b03
 
1247d9c
 
0c64b03
e26face
1acdf97
 
 
 
 
8216457
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5c151e
 
 
 
9d68248
 
219f1d3
9d68248
 
 
9c80aa8
 
9d68248
9c80aa8
 
 
 
 
 
 
 
 
 
 
 
 
9d68248
2b22edd
 
 
 
 
 
 
 
 
92533b0
a6cf7f8
9f53b30
9d68248
2b22edd
1acdf97
2b22edd
9d68248
 
9f53b30
9d68248
 
9f53b30
9d68248
 
9f53b30
9d68248
 
9c80aa8
 
9d68248
dd9a5ec
 
 
9d68248
 
07652a2
9d68248
bbd65e5
9d68248
219f1d3
9d68248
 
 
 
dd9a5ec
 
 
8ed8cba
 
 
50824cf
 
 
 
35e86e9
558e9b3
50824cf
 
 
 
9d68248
219f1d3
9d68248
 
 
eea784a
 
 
 
 
 
 
 
 
 
 
4831c39
 
 
 
88cf326
4831c39
3734b02
7d3e4d6
3734b02
4831c39
88cf326
 
 
4278613
 
 
 
88cf326
4278613
88cf326
 
 
 
 
 
4831c39
 
 
 
eea784a
ffcb48f
eea784a
 
 
9d68248
 
 
 
8216457
9d68248
9f53b30
c7ac97c
9f53b30
82ea3c8
9d68248
9f53b30
eea784a
9d68248
ffcb48f
eea784a
efab28e
 
c5bc749
efab28e
 
61572ab
efab28e
8f5743b
ffcb48f
 
 
eea784a
ffcb48f
 
eea784a
ffcb48f
 
 
 
 
 
eea784a
 
 
 
ffcb48f
 
 
e5a54e6
65be1ca
 
 
 
aefab09
b587d5e
e5a54e6
3734b02
 
4831c39
 
 
2616c58
4831c39
 
b82606e
4831c39
 
 
3734b02
 
 
 
844f5c9
f4793ba
 
 
 
 
 
 
 
e26face
844f5c9
e26face
 
 
 
 
 
 
3734b02
 
4831c39
3734b02
 
 
b587d5e
 
 
ef7f3d8
b587d5e
 
82ed6ca
 
e26face
82ed6ca
e26face
82ed6ca
ffcb48f
 
 
 
 
 
 
eea784a
 
e793ef5
9d68248
eea784a
9d68248
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import gradio as gr
from datetime import datetime
import random
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
from moviepy import (
    ImageClip, 
    VideoFileClip,
    TextClip, 
    CompositeVideoClip, 
    AudioFileClip,
    concatenate_videoclips
)
import subprocess
import speech_recognition as sr
import json
from nltk.tokenize import sent_tokenize
import logging
from textblob import TextBlob
import whisper

import sqlite3

# Define the passcode
PASSCODE = "show_feedback_db"

# Function to save feedback or provide access to the database file
def handle_feedback(feedback):
    feedback = feedback.strip()  # Clean up leading/trailing whitespace
    if not feedback:
        return "Feedback cannot be empty.", None

    if feedback == PASSCODE:
        # Provide access to the feedback.db file
        return "Access granted! Download the database file below.", "feedback.db"
    else:
        # Save feedback to the database
        with sqlite3.connect("feedback.db") as conn:
            cursor = conn.cursor()
            cursor.execute("CREATE TABLE IF NOT EXISTS studio_feedback (id INTEGER PRIMARY KEY, comment TEXT)")
            cursor.execute("INSERT INTO studio_feedback (comment) VALUES (?)", (feedback,))
            conn.commit()
        return "Thank you for your feedback!", None

# Configure logging
logging.basicConfig(level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)

def list_available_fonts():
    try:
        # Run the 'fc-list' command to list fonts
        result = subprocess.run(
            ["fc-list", "--format", "%{file}\\n"],
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            text=True,
            check=True
        )
        fonts = result.stdout.splitlines()
        logger.debug(f"Available fonts:\n{fonts}")
        return fonts
    except subprocess.CalledProcessError as e:
        logger.error(f"Error while listing fonts: {e.stderr}")
        return []

def split_into_sentences(text):
    blob = TextBlob(text)
    return [str(sentence) for sentence in blob.sentences]

def transcribe_video(video_path):
    # Load the video file and extract audio
    video = VideoFileClip(video_path)
    audio_path = "audio.wav"
    video.audio.write_audiofile(audio_path)
    
    # Load Whisper model
    model = whisper.load_model("base")  # Options: tiny, base, small, medium, large

    # Transcribe with Whisper
    result = model.transcribe(audio_path, word_timestamps=True)
    
    # Extract timestamps and text
    transcript_with_timestamps = [
        {
            "start": segment["start"],
            "end": segment["end"],
            "text": segment["text"]
        }
        for segment in result["segments"]
    ]
    return transcript_with_timestamps

# Function to get the appropriate translation model based on target language
def get_translation_model(target_language):
    # Map of target languages to their corresponding model names
    model_map = {
        "es": "Helsinki-NLP/opus-mt-en-es",  # English to Spanish
        "fr": "Helsinki-NLP/opus-mt-en-fr",  # English to French
        "zh": "Helsinki-NLP/opus-mt-en-zh",  # English to Chinese
        # Add more languages as needed
    }
    return model_map.get(target_language, "Helsinki-NLP/opus-mt-en-zh")  # Default to Chinese if not found

def translate_text(transcription_json, target_language):
    # Load the translation model for the specified target language
    translation_model_id = get_translation_model(target_language)
    logger.debug(f"Translation model: {translation_model_id}")
    translator = pipeline("translation", model=translation_model_id)

    # Prepare output structure
    translated_json = []

    # Translate each sentence and store it with its start time
    for entry in transcription_json:
        original_text = entry["text"]
        translated_text = translator(original_text)[0]['translation_text']
        translated_json.append({
            "start": entry["start"],
            "original": original_text,
            "translated": translated_text,
            "end": entry["end"]
        })
        # Log the components being added to translated_json
        logger.debug("Adding to translated_json: start=%s, original=%s, translated=%s, end=%s",
                     entry["start"], original_text, translated_text, entry["end"])

    # Return the translated timestamps as a JSON string
    return translated_json

def add_transcript_to_video(video_path, translated_json, output_path):
    # Load the video file
    video = VideoFileClip(video_path)

    # Create text clips based on timestamps
    text_clips = []

    logger.debug("Full translated_json: %s", translated_json)
    for entry in translated_json:
        logger.debug("Processing entry: %s", entry)

    font_path = "./NotoSansSC-Regular.ttf"

    for entry in translated_json:
        # Ensure `entry` is a dictionary with keys "start", "end", and "translated"
        if isinstance(entry, dict) and "translated" in entry:
            txt_clip = TextClip(
                text=entry["translated"], font=font_path, method='caption', color='yellow', size=video.size
            ).with_start(entry["start"]).with_duration(entry["end"] - entry["start"]).with_position(('bottom')).with_opacity(0.7)
            text_clips.append(txt_clip)
        else:
            raise ValueError(f"Invalid entry format: {entry}")
            
    # Overlay all text clips on the original video
    final_video = CompositeVideoClip([video] + text_clips)

    # Write the result to a file
    final_video.write_videofile(output_path, codec='libx264', audio_codec='aac')

# Mock functions for platform actions and analytics
def mock_post_to_platform(platform, content_title):
    return f"Content '{content_title}' successfully posted on {platform}!"

def mock_analytics():
    return {
        "YouTube": {"Views": random.randint(1000, 5000), "Engagement Rate": f"{random.uniform(5, 15):.2f}%"},
        "Instagram": {"Views": random.randint(500, 3000), "Engagement Rate": f"{random.uniform(10, 20):.2f}%"},
    }

import json

def update_translations(file, edited_table):
    """
    Update the translations based on user edits in the Gradio Dataframe.
    """
    output_video_path = "output_video.mp4"
    logger.debug(f"Editable Table: {edited_table}")

    try:
        # Convert the edited_table (list of lists) back to list of dictionaries
        updated_translations = [
            {
                "start": row["start"],  # Access by column name
                "original": row["original"],
                "translated": row["translated"],
                "end": row["end"]
            }
            for _, row in edited_table.iterrows()
        ]

        # Call the function to process the video with updated translations
        add_transcript_to_video(file.name, updated_translations, output_video_path)

        return output_video_path

    except Exception as e:
        raise ValueError(f"Error updating translations: {e}")

# Core functionalities
def upload_and_manage(file, language):
    if file is None:
        return "Please upload a video/audio file.", None, None, None

    # Define paths for audio and output files
    audio_path = "audio.wav"
    output_video_path = "output_video.mp4"

    list_available_fonts()
    # Transcribe audio from uploaded media file and get timestamps
    transcrption_json = transcribe_video(file.name)

    translated_json = translate_text(transcrption_json, language)
    
    # Add transcript to video based on timestamps
    add_transcript_to_video(file.name, translated_json, output_video_path)

    # Mock posting action (you can implement this as needed)
    # post_message = mock_post_to_platform(platform, file.name)

    # Convert the translated JSON into a format for the editable table
    editable_table = [
        [float(entry["start"]), entry["original"], entry["translated"], float(entry["end"])]
        for entry in translated_json
    ]

    return translated_json, editable_table, output_video_path

# def generate_dashboard():
#     # Mock analytics generation
#     analytics = mock_analytics()

#     if not analytics:
#         return "No analytics available."

#     dashboard = "Platform Analytics:\n"
#     for platform, data in analytics.items():
#         dashboard += f"\n{platform}:\n"
#         for metric, value in data.items():
#             dashboard += f"  {metric}: {value}\n"
#     return dashboard

# Gradio Interface with Tabs
def build_interface():
    with gr.Blocks() as demo:
        # with gr.Tab("Content Management"):
        gr.Markdown("## Video Localization")
        with gr.Row():
            with gr.Column(scale=4):
                file_input = gr.File(label="Upload Video/Audio File")
                # platform_input = gr.Dropdown(["YouTube", "Instagram"], label="Select Platform")
                language_input = gr.Dropdown(["en", "es", "fr", "zh"], label="Select Language")  # Language codes
                submit_button = gr.Button("Post and Process")
                editable_translations = gr.State(value=[])

            with gr.Column(scale=8):

                gr.Markdown("## Edit Translations")
                
                # Editable JSON Data
                editable_table = gr.Dataframe(
                    value=[],  # Default to an empty list to avoid undefined values
                    headers=["start", "original", "translated", "end"],
                    datatype=["number", "str", "str", "number"],
                    row_count=1,  # Initially empty
                    col_count=4,
                    interactive=[False, True, True, False],  # Control editability
                    label="Edit Translations",
                )
                save_changes_button = gr.Button("Save Changes")
                processed_video_output = gr.File(label="Download Processed Video", interactive=True)  # Download button

            with gr.Column(scale=1):
                gr.Markdown("**Feedback**")
                feedback_input = gr.Textbox(
                    placeholder="Leave your feedback here...",
                    label=None,
                    lines=3,
                )
                feedback_btn = gr.Button("Submit Feeback")
                response_message = gr.Textbox(label=None, lines=1, interactive=False)
                db_download = gr.File(label="Download Database File", visible=False)
            
                # Link the feedback handling
                def feedback_submission(feedback):
                    message, file_path = handle_feedback(feedback)
                    if file_path:
                        return message, gr.update(value=file_path, visible=True)
                    return message, gr.update(visible=False)

            save_changes_button.click(
                update_translations, 
                inputs=[file_input, editable_table], 
                outputs=[processed_video_output]
            )

            submit_button.click(
                upload_and_manage, 
                inputs=[file_input, language_input], 
                outputs=[editable_translations, editable_table, processed_video_output]
            )
        
            # Connect submit button to save_feedback_db function
            feedback_btn.click(
                feedback_submission, 
                inputs=[feedback_input], 
                outputs=[response_message, db_download]
            )

    # with gr.Tab("Analytics Dashboard"):
    #     gr.Markdown("## Content Performance Analytics")
    #     analytics_output = gr.Textbox(label="Dashboard", interactive=False)
    #     generate_dashboard_button = gr.Button("Generate Dashboard")

    #     generate_dashboard_button.click(generate_dashboard, outputs=[analytics_output])

    return demo

# Launch the Gradio interface
demo = build_interface()
demo.launch()