File size: 4,801 Bytes
e793ef5
eea784a
 
c7ac97c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b22edd
 
 
 
 
 
 
 
 
 
a6cf7f8
2b22edd
 
 
 
 
eea784a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7ac97c
 
 
 
 
eea784a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7ac97c
eea784a
 
 
 
 
 
 
 
 
 
 
e793ef5
eea784a
 
 
 
 
 
 
 
e793ef5
eea784a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import gradio as gr
from datetime import datetime
import random
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read

# Initialize the Whisper pipeline
whisper_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-medium")

def transcribe_audio_from_file(file_path):
    """
    Transcribes audio from a local file using the Whisper pipeline.

    Args:
        file_path (str): Path to the local media file.

    Returns:
        str: Transcription text if successful, otherwise None.
    """
    try:
        # Transcribe the audio using Whisper
        transcription = whisper_pipeline(file_path, return_timestamps=True)
        logger.debug(f"Transcription: {transcription['text']}")
        return transcription["text"]
    except Exception as e:
        logger.error(f"An error occurred during transcription: {e}")
        return None

# Initialize the translation pipeline
translation_pipeline = pipeline("translation", model="Helsinki-NLP/opus-mt-en-{target_language}")

# Function to get the appropriate translation model based on target language
def get_translation_model(target_language):
    # Map of target languages to their corresponding model names
    model_map = {
        "es": "Helsinki-NLP/opus-mt-en-es",  # English to Spanish
        "fr": "Helsinki-NLP/opus-mt-en-fr",  # English to French
        "zh": "Helsinki-NLP/opus-mt-en-zh",  # English to Chinese
        # Add more languages as needed
    }
    return model_map.get(target_language, "Helsinki-NLP/opus-mt-en-fr")  # Default to French if not found

# Example usage in your application
def translate_text(text, target_language):
    translation_model_id = get_translation_model(target_language)
    translator = pipeline("translation", model=translation_model_id)
    return translator(text)[0]['translation_text']

# Mock functions for platform actions and analytics
def mock_post_to_platform(platform, content_title):
    return f"Content '{content_title}' successfully posted on {platform}!"

def mock_analytics():
    return {
        "YouTube": {"Views": random.randint(1000, 5000), "Engagement Rate": f"{random.uniform(5, 15):.2f}%"},
        "Instagram": {"Views": random.randint(500, 3000), "Engagement Rate": f"{random.uniform(10, 20):.2f}%"},
    }

# Core functionalities
def upload_and_manage(file, platform, language):
    if file is None:
        return "Please upload a video/audio file.", None, None, None

    # Transcribe audio from uploaded media file
    transcription = transcribe_audio_from_media_file(file.name)

    # Translate transcription to the selected language
    translation = translate_text(transcription, language)

    # Mock posting action
    post_message = mock_post_to_platform(platform, file.name)

    # Mock analytics generation
    analytics = mock_analytics()

    return post_message, transcription, translation, analytics

def generate_dashboard(analytics):
    if not analytics:
        return "No analytics available."

    dashboard = "Platform Analytics:\n"
    for platform, data in analytics.items():
        dashboard += f"\n{platform}:\n"
        for metric, value in data.items():
            dashboard += f"  {metric}: {value}\n"
    return dashboard

# Gradio Interface with Tabs
def build_interface():
    with gr.Blocks() as demo:
        with gr.Tab("Content Management"):
            gr.Markdown("## Integrated Content Management")
            with gr.Row():
                file_input = gr.File(label="Upload Video/Audio File")
                platform_input = gr.Dropdown(["YouTube", "Instagram"], label="Select Platform")
                language_input = gr.Dropdown(["en", "es", "fr", "zh"], label="Select Language")  # Language codes
            
            submit_button = gr.Button("Post and Process")
            
            with gr.Row():
                post_output = gr.Textbox(label="Posting Status", interactive=False)
                transcription_output = gr.Textbox(label="Transcription", interactive=False)
                translation_output = gr.Textbox(label="Translation", interactive=False)

            submit_button.click(upload_and_manage, 
                                inputs=[file_input, platform_input, language_input], 
                                outputs=[post_output, transcription_output, translation_output, gr.State()])
        
        with gr.Tab("Analytics Dashboard"):
            gr.Markdown("## Content Performance Analytics")
            analytics_output = gr.Textbox(label="Dashboard", interactive=False)
            generate_dashboard_button = gr.Button("Generate Dashboard")

            generate_dashboard_button.click(generate_dashboard, inputs=[gr.State()], outputs=[analytics_output])

    return demo

demo = build_interface()
demo.launch()