Digest / app.py
qqwjq1981's picture
Update app.py
017294a verified
raw
history blame
12.9 kB
#!/usr/bin/env python
# coding: utf-8
# In[23]:
# In[24]:
# import subprocess
# try:
# result = subprocess.run(["ffmpeg", "-version"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
# if result.returncode == 0:
# print("FFmpeg version:")
# print(result.stdout.split('\n')[0]) # Print the first line of the version output
# else:
# print("Error checking FFmpeg version:")
# print(result.stderr)
# except FileNotFoundError:
# print("FFmpeg is not installed or not found in PATH.")
# In[25]:
from urllib.parse import urlparse, parse_qs
import gradio as gr
import requests
from bs4 import BeautifulSoup
import openai
from openai import OpenAI
import speech_recognition as sr
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
from youtube_transcript_api import YouTubeTranscriptApi, TranscriptsDisabled
from youtube_transcript_api.formatters import TextFormatter
from urllib.parse import urlparse, parse_qs
import json
import os
import yaml
import pandas as pd
import numpy as np
import azureml.core
from azureml.core import Workspace, Datastore, ComputeTarget
from azure.identity import DefaultAzureCredential
from azure.ai.ml import MLClient
from azure.ai.ml import command
from azure.ai.ml import Input, Output
from azure.ai.ml import load_component
from azure.ai.ml.entities import Environment, Data, PipelineJob, Job, Schedule
from datetime import datetime, timedelta
# In[26]:
openai_api_key = os.environ["OPENAI_API_KEY"]
# In[27]:
# transcription = pipeline(
# "automatic-speech-recognition",
# model="openai/whisper-medium")
# result = transcription("2024_dairy.wav", return_timestamps=True)
# print(result["text"])
# In[28]:
def is_youtube_url(url):
try:
# Parse the URL
parsed_url = urlparse(url)
# Check if the domain is YouTube
if parsed_url.netloc in ["www.youtube.com", "youtube.com", "m.youtube.com", "youtu.be"]:
# For standard YouTube URLs, ensure it has a 'v' parameter
if "youtube.com" in parsed_url.netloc:
return "v" in parse_qs(parsed_url.query)
# For shortened YouTube URLs (youtu.be), check the path
elif "youtu.be" in parsed_url.netloc:
return len(parsed_url.path.strip("/")) > 0
return False
except Exception as e:
return False
def get_youtube_transcript(youtube_url):
try:
# Parse the video ID from the URL
parsed_url = urlparse(youtube_url)
video_id = parse_qs(parsed_url.query).get("v")
if not video_id:
return "Invalid YouTube URL. Please provide a valid URL."
video_id = video_id[0] # Extract the video ID
# Fetch the transcript
transcript = YouTubeTranscriptApi.get_transcript(video_id, proxies={"https": "http://localhost:8080"})
# Format the transcript as plain text
formatter = TextFormatter()
formatted_transcript = formatter.format_transcript(transcript)
return formatted_transcript
except Exception as e:
return f"An error occurred: {str(e)}"
# In[29]:
def check_subtitles(video_id):
try:
transcripts = YouTubeTranscriptApi.list_transcripts(video_id)
print(f"Available transcripts: {transcripts}")
return True
except TranscriptsDisabled:
print("Subtitles are disabled for this video.")
return False
except Exception as e:
print(f"An unexpected error occurred: {e}")
return False
# Test
video_id = "Um017R5Kr3A" # Replace with your YouTube video ID
check_subtitles(video_id)
# In[30]:
# 设置 OpenAI API
client = OpenAI(api_key=openai_api_key)
### Curify Digest ###
# Function to fetch webpage, render it, and generate summary/perspectives
def process_webpage(url):
try:
if is_youtube_url(url):
rendered_content = get_youtube_transcript(url)
else:
# Fetch and parse webpage
response = requests.get(url)
soup = BeautifulSoup(response.text, "html.parser")
html_content = str(soup.prettify())
for script in soup(["script", "style"]):
script.decompose() # Remove script and style tags
rendered_content = soup.get_text(separator="\n").strip().replace("\n\n", "")
text_content = rendered_content[:2000] # Limit content length for processing
# Generate summary and perspectives
summary_prompt = f"Summarize the following content:\n{text_content}\n Please use the language of the originial content"
perspectives_prompt = f"Generate a reflective review for the following content:\n{text_content}\n Please output the perspectives in no more than 5 very concise bullet points. Please use the language of the originial content"
summary_response = client.chat.completions.create(
model="gpt-4o",
messages=[{"role": "user", "content": summary_prompt}],
max_tokens=500,
)
perspectives_response = client.chat.completions.create(
model="gpt-4o",
messages=[{"role": "user", "content": perspectives_prompt}],
max_tokens=500,
)
summary = summary_response.choices[0].message.content.strip()
perspectives = perspectives_response.choices[0].message.content.strip()
return rendered_content, summary, perspectives
except Exception as e:
return f"Error fetching or processing content: {str(e)}", "", ""
# In[31]:
# Function for chatbot interaction
def chat_with_ai(chat_history, user_input, content):
try:
messages = [{"role": "system", "content": "You are a helpful assistant."}]
# Add chat history
for user, bot in chat_history:
messages.append({"role": "user", "content": user})
messages.append({"role": "assistant", "content": bot})
# Add user input with webpage content
messages.append({"role": "user", "content": f"Based on this content: {content}\n\n{user_input}"})
# Call OpenAI API
ai_response = client.chat.completions.create(
model="gpt-4o",
messages=messages,
max_tokens=300,
)
reply = ai_response.choices[0].message.content.strip()
chat_history.append((user_input, reply))
return chat_history
except Exception as e:
return chat_history + [(user_input, f"Error: {str(e)}")]
# In[32]:
def generate_reflection(chat_history):
"""
Generate a reflection based on the chat history.
Args:
chat_history (list of tuples): List of (user_input, ai_reply) pairs.
Returns:
str: A reflective summary generated by AI.
"""
try:
messages = [{"role": "system", "content": "You are a professional content summarizer. Generate thoughtful reflections."}]
# Add conversation to messages
for user, bot in chat_history:
messages.append({"role": "user", "content": user})
messages.append({"role": "assistant", "content": bot})
# Prompt for reflection
messages.append({"role": "user", "content": "Please provide a concise, reflective summary of this conversation."})
# Call OpenAI API
ai_response = client.chat.completions.create(
model="gpt-4o",
messages=messages,
max_tokens=200,
)
reflection = ai_response.choices[0].message.content.strip()
return reflection
except Exception as e:
return f"Error generating reflection: {str(e)}"
# In[33]:
import requests
def post_to_linkedin(access_token, reflection, visibility="PUBLIC"):
"""
Post a reflection to LinkedIn.
Args:
access_token (str): LinkedIn API access token.
reflection (str): The content to post.
visibility (str): Visibility setting ("PUBLIC" or "CONNECTIONS"). Defaults to "PUBLIC".
Returns:
str: Confirmation or error message.
"""
try:
url = "https://api.linkedin.com/v2/ugcPosts"
headers = {
"Authorization": f"Bearer {access_token}",
"Content-Type": "application/json",
}
your_linkedin_person_id = 'jay'
payload = {
"author": f"urn:li:person:{your_linkedin_person_id}", # Replace with your LinkedIn person URN
"lifecycleState": "PUBLISHED",
"visibility": {"com.linkedin.ugc.MemberNetworkVisibility": visibility},
"specificContent": {
"com.linkedin.ugc.ShareContent": {
"shareCommentary": {
"text": reflection
},
"shareMediaCategory": "NONE"
}
}
}
response = requests.post(url, headers=headers, json=payload)
if response.status_code == 201:
return "Reflection successfully posted to LinkedIn!"
else:
return f"Failed to post to LinkedIn. Error: {response.json()}"
except Exception as e:
return f"Error posting to LinkedIn: {str(e)}"
# In[34]:
### Curify Ideas ###
ideas_db = []
def extract_ideas_from_text(text):
# Mock idea extraction
ideas = text.split(". ")
for idea in ideas:
if idea.strip():
ideas_db.append({"content": idea.strip(), "timestamp": datetime.now()})
return [idea["content"] for idea in ideas_db]
# In[35]:
### Curify Projects ###
def prepare_meeting(json_input):
try:
meetings = json.loads(json_input)
preparations = []
for meeting in meetings:
title = meeting.get("title", "No Title")
time = meeting.get("time", "No Time")
description = meeting.get("description", "No Description")
preparations.append(f"Meeting: {title}\nTime: {time}\nDetails: {description}")
return "\n\n".join(preparations)
except Exception as e:
return f"Error processing input: {e}"
# In[36]:
### Gradio Demo ###
with gr.Blocks() as demo:
gr.Markdown("## Curify: Unified AI Tools for Productivity")
with gr.Tab("Curify Digest"):
with gr.Row():
# Column 1: Webpage rendering
with gr.Column():
gr.Markdown("## Render Webpage")
url_input = gr.Textbox(label="Enter URL")
# Shared Button: Fetch content, show webpage, and summary/perspectives
fetch_btn = gr.Button("Fetch and Process Webpage")
text_output = gr.Textbox(label="Webpage Content", lines=7)
# Column 2: Summary and Perspectives
with gr.Column():
gr.Markdown("## Summary & Perspectives")
summary_output = gr.Textbox(label="Summary", lines=5)
perspectives_output = gr.Textbox(label="Perspectives", lines=5)
# Column 3: Chatbot
with gr.Column():
gr.Markdown("## Interactive Chatbot")
chatbot_history_gr = gr.Chatbot(label="Chat History")
user_input = gr.Textbox(label="Ask a Question", placeholder="Type your question here...")
chatbot_btn = gr.Button("Send")
reflection_btn = gr.Button("Generate reflection")
reflection_output = gr.Textbox(label="Reflections", lines=5)
fetch_btn.click(
process_webpage,
inputs=url_input,
outputs=[text_output, summary_output, perspectives_output],
)
chatbot_btn.click(
chat_with_ai,
inputs=[chatbot_history_gr, user_input, text_output],
outputs=chatbot_history_gr,
)
reflection_btn.click(
generate_reflection,
inputs=chatbot_history_gr,
outputs=reflection_output,
)
with gr.Tab("Curify Ideas"):
text_input = gr.Textbox(label="Enter text or ideas")
extracted_ideas = gr.Textbox(label="Extracted Ideas", interactive=False)
extract_button = gr.Button("Extract Ideas")
def process_ideas(text):
return ", ".join(extract_ideas_from_text(text))
extract_button.click(process_ideas, inputs=[text_input], outputs=[extracted_ideas])
with gr.Tab("Curify Projects"):
json_input = gr.Textbox(label="Enter meeting data (JSON format)")
prepared_meetings = gr.Textbox(label="Meeting Preparations", interactive=False)
prepare_button = gr.Button("Prepare Meetings")
prepare_button.click(prepare_meeting, inputs=[json_input], outputs=[prepared_meetings])
demo.launch(share=True)
# In[ ]: