File size: 13,807 Bytes
17aa8f3
982fdda
bdbadad
90cb3d2
07b8fd8
 
b2fd468
 
 
bb7c504
 
 
 
90cb3d2
07b8fd8
90cb3d2
85e629e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90cb3d2
 
07b8fd8
90cb3d2
 
 
 
07b8fd8
4bcc990
07b8fd8
4bcc990
 
 
 
 
 
 
 
 
 
b2fd468
 
 
 
 
 
bb7c504
 
 
b2fd468
4bcc990
 
07b8fd8
4bcc990
 
 
 
 
 
 
 
 
 
 
 
 
b2fd468
 
 
 
 
 
bb7c504
 
4bcc990
 
07b8fd8
 
4bcc990
 
 
 
 
 
 
 
 
 
b2fd468
 
 
 
 
 
bb7c504
 
4bcc990
07b8fd8
 
 
 
 
 
 
 
 
 
 
 
 
 
90cb3d2
bdbadad
 
07b8fd8
bdbadad
982fdda
b2fd468
 
 
 
 
 
bb7c504
 
b2fd468
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb7c504
 
 
 
b2fd468
 
bb7c504
 
 
 
b2fd468
 
 
 
 
 
bb7c504
 
 
 
 
 
b2fd468
 
 
 
 
 
 
 
 
 
bb7c504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90cb3d2
07b8fd8
90cb3d2
07b8fd8
90cb3d2
4bcc990
 
bb7c504
b2fd468
 
 
4bcc990
 
bb7c504
b2fd468
 
4bcc990
 
 
bb7c504
b2fd468
 
 
90cb3d2
b2fd468
bb7c504
b2fd468
 
90cb3d2
07b8fd8
 
b2fd468
 
 
 
 
 
 
 
 
 
 
 
 
 
bb7c504
 
 
 
 
 
 
 
b2fd468
07b8fd8
b2fd468
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import gradio as gr
import requests
from bs4 import BeautifulSoup
import io
import os
import base64
import zipfile
from PIL import Image
from io import BytesIO


# Input data with links to Hugging Face repositories
data_full = [
    ['CultriX/Qwen2.5-14B-SLERPv7', 'https://huggingface.co/CultriX/Qwen2.5-14B-SLERPv7', 0.7205, 0.8272, 0.7541, 0.6581, 0.5, 0.729],
    ['djuna/Q2.5-Veltha-14B-0.5', 'https://huggingface.co/djuna/Q2.5-Veltha-14B-0.5', 0.7492, 0.8386, 0.7305, 0.598, 0.43, 0.7817],
    ['CultriX/Qwen2.5-14B-FinalMerge', 'https://huggingface.co/CultriX/Qwen2.5-14B-FinalMerge', 0.7248, 0.8277, 0.7113, 0.7052, 0.57, 0.7001],
    ['CultriX/Qwen2.5-14B-MultiCultyv2', 'https://huggingface.co/CultriX/Qwen2.5-14B-MultiCultyv2', 0.7295, 0.8359, 0.7363, 0.5767, 0.44, 0.7316],
    ['CultriX/Qwen2.5-14B-Brocav7', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav7', 0.7445, 0.8353, 0.7508, 0.6292, 0.46, 0.7629],
    ['CultriX/Qwen2.5-14B-Broca', 'https://huggingface.co/CultriX/Qwen2.5-14B-Broca', 0.7456, 0.8352, 0.748, 0.6034, 0.44, 0.7716],
    ['CultriX/Qwen2.5-14B-Brocav3', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav3', 0.7395, 0.8388, 0.7393, 0.6405, 0.47, 0.7659],
    ['CultriX/Qwen2.5-14B-Brocav4', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav4', 0.7432, 0.8377, 0.7444, 0.6277, 0.48, 0.758],
    ['CultriX/Qwen2.5-14B-Brocav2', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav2', 0.7492, 0.8302, 0.7508, 0.6377, 0.51, 0.7478],
    ['CultriX/Qwen2.5-14B-Brocav5', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav5', 0.7445, 0.8313, 0.7547, 0.6376, 0.5, 0.7304],
    ['CultriX/Qwen2.5-14B-Brocav6', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav6', 0.7179, 0.8354, 0.7531, 0.6378, 0.49, 0.7524],
    ['CultriX/Qwenfinity-2.5-14B', 'https://huggingface.co/CultriX/Qwenfinity-2.5-14B', 0.7347, 0.8254, 0.7279, 0.7267, 0.56, 0.697],
    ['CultriX/Qwen2.5-14B-Emergedv2', 'https://huggingface.co/CultriX/Qwen2.5-14B-Emergedv2', 0.7137, 0.8335, 0.7363, 0.5836, 0.44, 0.7344],
    ['CultriX/Qwen2.5-14B-Unity', 'https://huggingface.co/CultriX/Qwen2.5-14B-Unity', 0.7063, 0.8343, 0.7423, 0.682, 0.57, 0.7498],
    ['CultriX/Qwen2.5-14B-MultiCultyv3', 'https://huggingface.co/CultriX/Qwen2.5-14B-MultiCultyv3', 0.7132, 0.8216, 0.7395, 0.6792, 0.55, 0.712],
    ['CultriX/Qwen2.5-14B-Emergedv3', 'https://huggingface.co/CultriX/Qwen2.5-14B-Emergedv3', 0.7436, 0.8312, 0.7519, 0.6585, 0.55, 0.7068],
    ['CultriX/SeQwence-14Bv1', 'https://huggingface.co/CultriX/SeQwence-14Bv1', 0.7278, 0.841, 0.7541, 0.6816, 0.52, 0.7539],
    ['CultriX/Qwen2.5-14B-Wernickev2', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev2', 0.7391, 0.8168, 0.7273, 0.622, 0.45, 0.7572],
    ['CultriX/Qwen2.5-14B-Wernickev3', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev3', 0.7357, 0.8148, 0.7245, 0.7023, 0.55, 0.7869],
    ['CultriX/Qwen2.5-14B-Wernickev4', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev4', 0.7355, 0.829, 0.7497, 0.6306, 0.48, 0.7635],
    ['CultriX/SeQwential-14B-v1', 'https://huggingface.co/CultriX/SeQwential-14B-v1', 0.7355, 0.8205, 0.7549, 0.6367, 0.48, 0.7626],
    ['CultriX/Qwen2.5-14B-Wernickev5', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev5', 0.7224, 0.8272, 0.7541, 0.679, 0.51, 0.7578],
    ['CultriX/Qwen2.5-14B-Wernickev6', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev6', 0.6994, 0.7549, 0.5816, 0.6991, 0.58, 0.7267],
    ['CultriX/Qwen2.5-14B-Wernickev7', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev7', 0.7147, 0.7599, 0.6097, 0.7056, 0.57, 0.7164],
    ['CultriX/Qwen2.5-14B-FinalMerge-tmp2', 'https://huggingface.co/CultriX/Qwen2.5-14B-FinalMerge-tmp2', 0.7255, 0.8192, 0.7535, 0.6671, 0.5, 0.7612],
]

columns = ["Model Configuration", "Model Link", "tinyArc", "tinyHellaswag", "tinyMMLU", "tinyTruthfulQA", "tinyTruthfulQA_mc1", "tinyWinogrande"]

# Convert to DataFrame
df_full = pd.DataFrame(data_full, columns=columns)

# Visualization and analytics functions
def plot_average_scores():
    df_full["Average Score"] = df_full.iloc[:, 2:].mean(axis=1)
    df_avg_sorted = df_full.sort_values(by="Average Score", ascending=False)

    plt.figure(figsize=(12, 8))
    plt.barh(df_avg_sorted["Model Configuration"], df_avg_sorted["Average Score"])
    plt.title("Average Performance of Models Across Tasks", fontsize=16)
    plt.xlabel("Average Score", fontsize=14)
    plt.ylabel("Model Configuration", fontsize=14)
    plt.gca().invert_yaxis()
    plt.grid(axis='x', linestyle='--', alpha=0.7)
    plt.tight_layout()
    
    img_buffer = io.BytesIO()
    plt.savefig(img_buffer, format='png')
    img_buffer.seek(0)
    img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
    plt.close()

    pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
    return pil_image, "average_performance.png"


def plot_task_performance():
    df_full_melted = df_full.melt(id_vars=["Model Configuration", "Model Link"], var_name="Task", value_name="Score")

    plt.figure(figsize=(14, 10))
    for model in df_full["Model Configuration"]:
        model_data = df_full_melted[df_full_melted["Model Configuration"] == model]
        plt.plot(model_data["Task"], model_data["Score"], marker="o", label=model)

    plt.title("Performance of All Models Across Tasks", fontsize=16)
    plt.xlabel("Task", fontsize=14)
    plt.ylabel("Score", fontsize=14)
    plt.xticks(rotation=45)
    plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize=9)
    plt.grid(axis='y', linestyle='--', alpha=0.7)
    plt.tight_layout()
    
    img_buffer = io.BytesIO()
    plt.savefig(img_buffer, format='png')
    img_buffer.seek(0)
    img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
    plt.close()
    pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
    return pil_image, "task_performance.png"

def plot_task_specific_top_models():
    top_models = df_full.iloc[:, 2:].idxmax()
    top_scores = df_full.iloc[:, 2:].max()

    results = pd.DataFrame({"Top Model": top_models, "Score": top_scores}).reset_index().rename(columns={"index": "Task"})

    plt.figure(figsize=(12, 6))
    plt.bar(results["Task"], results["Score"])
    plt.title("Task-Specific Top Models", fontsize=16)
    plt.xlabel("Task", fontsize=14)
    plt.ylabel("Score", fontsize=14)
    plt.grid(axis="y", linestyle="--", alpha=0.7)
    plt.tight_layout()

    img_buffer = io.BytesIO()
    plt.savefig(img_buffer, format='png')
    img_buffer.seek(0)
    img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
    plt.close()
    pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
    return pil_image, "task_specific_top_models.png"

def scrape_mergekit_config(model_name):
    """
    Scrapes the Hugging Face model page for YAML configuration.
    """
    model_link = df_full.loc[df_full["Model Configuration"] == model_name, "Model Link"].values[0]
    response = requests.get(model_link)
    if response.status_code != 200:
        return f"Failed to fetch model page for {model_name}. Please check the link."

    soup = BeautifulSoup(response.text, "html.parser")
    yaml_config = soup.find("pre")  # Assume YAML is in <pre> tags
    if yaml_config:
        return yaml_config.text.strip()
    return f"No YAML configuration found for {model_name}."

def plot_heatmap():
    plt.figure(figsize=(12, 8))
    sns.heatmap(df_full.iloc[:, 2:], annot=True, cmap="YlGnBu", xticklabels=columns[2:], yticklabels=df_full["Model Configuration"])
    plt.title("Performance Heatmap", fontsize=16)
    plt.tight_layout()
    
    img_buffer = io.BytesIO()
    plt.savefig(img_buffer, format='png')
    img_buffer.seek(0)
    img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
    plt.close()
    pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
    return pil_image, "performance_heatmap.png"


def download_yaml(yaml_content, model_name):
    """
    Generates a downloadable link for the scraped YAML content.
    """
    if "No YAML configuration found" in yaml_content or "Failed to fetch model page" in yaml_content:
        return None  # Do not return a link if there's no config or a fetch error
    
    filename = f"{model_name.replace('/', '_')}_config.yaml"
    return gr.File(value=yaml_content.encode(), filename=filename)

def download_all_data():
    # Prepare data to download
    csv_buffer = io.StringIO()
    df_full.to_csv(csv_buffer, index=False)
    csv_data = csv_buffer.getvalue().encode('utf-8')
    
    # Prepare all plots
    average_plot_pil, average_plot_name = plot_average_scores()
    task_plot_pil, task_plot_name = plot_task_performance()
    top_models_plot_pil, top_models_plot_name = plot_task_specific_top_models()
    heatmap_plot_pil, heatmap_plot_name = plot_heatmap()

    plot_dict = {
        "average_performance": (average_plot_pil, average_plot_name),
        "task_performance": (task_plot_pil, task_plot_name),
        "top_models": (top_models_plot_pil, top_models_plot_name),
        "heatmap": (heatmap_plot_pil, heatmap_plot_name)
    }

    zip_buffer = io.BytesIO()
    with zipfile.ZipFile(zip_buffer, 'w') as zf:
        zf.writestr("model_scores.csv", csv_data)

        for name, (pil_image, filename) in plot_dict.items():
            image_bytes = io.BytesIO()
            pil_image.save(image_bytes, format='PNG')
            image_bytes.seek(0)
            zf.writestr(filename, image_bytes.read())


        for model_name in df_full["Model Configuration"].to_list():
            yaml_content = scrape_mergekit_config(model_name)
            if "No YAML configuration found" not in yaml_content and "Failed to fetch model page" not in yaml_content:
               zf.writestr(f"{model_name.replace('/', '_')}_config.yaml", yaml_content.encode())

    zip_buffer.seek(0)
    
    return zip_buffer, "analysis_data.zip"

def scrape_model_page(model_url):
    """
    Scrapes the Hugging Face model page for YAML configuration and other details.
    """
    try:
        # Fetch the model page
        response = requests.get(model_url)
        if response.status_code != 200:
            return f"Error: Unable to fetch the page (Status Code: {response.status_code})"
        
        soup = BeautifulSoup(response.text, "html.parser")

        # Extract YAML configuration (usually inside <pre> tags)
        yaml_config = soup.find("pre")
        yaml_text = yaml_config.text.strip() if yaml_config else "No YAML configuration found."

        # Extract additional metadata or performance (if available)
        metadata_section = soup.find("div", class_="metadata")
        metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found."

        # Return the scraped details
        return f"**YAML Configuration:**\n{yaml_text}\n\n**Metadata:**\n{metadata_text}"

    except Exception as e:
        return f"Error: {str(e)}"

def display_scraped_model_data(model_url):
    """
    Displays YAML configuration and metadata for a given model URL.
    """
    return scrape_model_page(model_url)


# Gradio app
with gr.Blocks() as demo:
    gr.Markdown("# Comprehensive Model Performance Analysis with Hugging Face Links")

    with gr.Row():
        btn1 = gr.Button("Show Average Performance")
        img1 = gr.Image(type="pil", label="Average Performance Plot",source="upload")
        img1_download = gr.File(label="Download Average Performance")
        btn1.click(plot_average_scores, outputs=[img1,img1_download])
        
    with gr.Row():
        btn2 = gr.Button("Show Task Performance")
        img2 = gr.Image(type="pil", label="Task Performance Plot", source="upload")
        img2_download = gr.File(label="Download Task Performance")
        btn2.click(plot_task_performance, outputs=[img2, img2_download])

    with gr.Row():
        btn3 = gr.Button("Task-Specific Top Models")
        img3 = gr.Image(type="pil", label="Task-Specific Top Models Plot", source="upload")
        img3_download = gr.File(label="Download Top Models")
        btn3.click(plot_task_specific_top_models, outputs=[img3, img3_download])
    
    with gr.Row():
      btn4 = gr.Button("Plot Performance Heatmap")
      heatmap_img = gr.Image(type="pil", label="Performance Heatmap", source="upload")
      heatmap_download = gr.File(label="Download Heatmap")
      btn4.click(plot_heatmap, outputs=[heatmap_img, heatmap_download])

    with gr.Row():
        model_selector = gr.Dropdown(choices=df_full["Model Configuration"].tolist(), label="Select a Model")
        with gr.Column():
          scrape_btn = gr.Button("Scrape MergeKit Configuration")
          yaml_output = gr.Textbox(lines=10, placeholder="YAML Configuration will appear here.")
          scrape_btn.click(scrape_mergekit_config, inputs=model_selector, outputs=yaml_output)
        with gr.Column():
          save_yaml_btn = gr.Button("Save MergeKit Configuration")
          yaml_download = gr.File(label="Download MergeKit Configuration")
          save_yaml_btn.click(download_yaml, inputs=[yaml_output, model_selector], outputs=yaml_download)


    with gr.Row():
        download_all_btn = gr.Button("Download Everything")
        all_downloads = gr.File(label="Download All Data")
        download_all_btn.click(download_all_data, outputs=all_downloads)
        
    # Live scraping feature
    gr.Markdown("## Live Scraping Features")
    with gr.Row():
        url_input = gr.Textbox(label="Enter Hugging Face Model URL", placeholder="https://huggingface.co/<model>")
        live_scrape_btn = gr.Button("Scrape Model Page")
        live_scrape_output = gr.Textbox(label="Scraped Data", lines=15)
        live_scrape_btn.click(display_scraped_model_data, inputs=url_input, outputs=live_scrape_output)


demo.launch()