Spaces:
Running
Running
File size: 20,456 Bytes
17aa8f3 982fdda bdbadad 90cb3d2 07b8fd8 a2b3402 b61d487 a2b3402 4937ac7 90cb3d2 85e629e 4937ac7 90cb3d2 a2b3402 b61d487 7c4b72f a2b3402 b61d487 a2b3402 b61d487 7c4b72f a2b3402 b61d487 a2b3402 b61d487 a2b3402 b61d487 a2b3402 b61d487 7c4b72f a2b3402 b61d487 7c4b72f 4937ac7 b61d487 4937ac7 b61d487 4937ac7 b61d487 a2b3402 4937ac7 a2b3402 b61d487 a2b3402 c56b33e b61d487 4937ac7 b61d487 010c7bd b2fd468 b61d487 4937ac7 b61d487 90cb3d2 a2b3402 b61d487 4937ac7 b61d487 4937ac7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 |
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import gradio as gr
import requests
from bs4 import BeautifulSoup
import io
import os
import base64
import zipfile
from PIL import Image
from io import BytesIO
import tempfile
### ----------------------------------------------------------------
### PART 1: "PARSED BENCHMARK RESULTS" SECTION
### ----------------------------------------------------------------
# This text is the exact content from your "great results" output.
# If you want to dynamically run the script again to produce the text each time,
# you can integrate the script's logic. But here, we simply store the final output.
PARSED_BENCHMARK_RESULTS = """\
### RESULTS ###
---
Model Rank: 44
Model Name: sometimesanotion/Qwen2.5-14B-Vimarckoso-v3
Model average score across benchmarks in %: 40.1
Models average score on IFEval benchmarks in %: 72.57
Models average score on BBH benchmarks in %: 48.58
Models average score on MATH benchmarks in %: 34.44
Models average score in GPQA benchmarks in %: 17.34
Models average score in MUSR benchmarks in %: 19.39
Models average score in MMLU-PRO benchmarks in %: 48.26
###
models:
- model: CultriX/SeQwence-14Bv1
- model: allknowingroger/Qwenslerp5-14B
merge_method: slerp
base_model: CultriX/SeQwence-14Bv1
dtype: bfloat16
parameters:
t: [0, 0.5, 1, 0.5, 0] # V shaped curve: Hermes for input & output, WizardMath in the middle layers
###
---
Model Rank: 45
Model Name: sthenno-com/miscii-14b-1225
Model average score across benchmarks in %: 40.08
Models average score on IFEval benchmarks in %: 78.78
Models average score on BBH benchmarks in %: 50.91
Models average score on MATH benchmarks in %: 31.57
Models average score in GPQA benchmarks in %: 17.0
Models average score in MUSR benchmarks in %: 14.77
Models average score in MMLU-PRO benchmarks in %: 47.46
###
tokenizer_source: "base"
chat_template: "chatml"
merge_method: ties
dtype: bfloat16
parameters:
normalize: true
base_model: sthenno-com/miscii-14b-1028
models:
- model: sthenno-com/miscii-14b-1028
parameters:
weight: 1
density: 0.5
- model: sthenno/miscii-1218
parameters:
weight: 1
density: 0.5
- model: sthenno/exp-002
parameters:
weight: 0.9
density: 0.5
- model: sthenno/miscii-1218
parameters:
weight: 0.6
density: 0.5
###
---
Model Rank: 46
Model Name: djuna/Q2.5-Veltha-14B-0.5
Model average score across benchmarks in %: 39.96
Models average score on IFEval benchmarks in %: 77.96
Models average score on BBH benchmarks in %: 50.32
Models average score on MATH benchmarks in %: 33.84
Models average score in GPQA benchmarks in %: 15.77
Models average score in MUSR benchmarks in %: 14.17
Models average score in MMLU-PRO benchmarks in %: 47.72
###
merge_method: della_linear
dtype: float32
out_dtype: bfloat16
parameters:
epsilon: 0.04
lambda: 1.05
normalize: true
base_model: arcee-ai/SuperNova-Medius
tokenizer_source: arcee-ai/SuperNova-Medius
models:
- model: arcee-ai/SuperNova-Medius
parameters:
weight: 10
density: 1
- model: EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2
parameters:
weight: 7
density: 0.5
- model: v000000/Qwen2.5-Lumen-14B
parameters:
weight: 7
density: 0.4
- model: allura-org/TQ2.5-14B-Aletheia-v1
parameters:
weight: 8
density: 0.4
- model: huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2
parameters:
weight: 8
density: 0.45
###
---
Model Rank: 48
Model Name: sometimesanotion/Qwen2.5-14B-Vimarckoso-v3-model_stock
Model average score across benchmarks in %: 39.81
Models average score on IFEval benchmarks in %: 71.62
Models average score on BBH benchmarks in %: 48.76
Models average score on MATH benchmarks in %: 33.99
Models average score in GPQA benchmarks in %: 17.34
Models average score in MUSR benchmarks in %: 19.23
Models average score in MMLU-PRO benchmarks in %: 47.95
(No MergeKit configuration found.)
You can try the following Python script to scrape the model page:
######################################################################
import requests
from bs4 import BeautifulSoup
def scrape_model_page(model_url):
try:
response = requests.get(model_url)
if response.status_code != 200:
return f"Error: Unable to fetch the page (Status Code: {response.status_code})"
soup = BeautifulSoup(response.text, "html.parser")
yaml_config = soup.find("pre")
yaml_text = yaml_config.text.strip() if yaml_config else "No YAML configuration found."
metadata_section = soup.find("div", class_="metadata")
metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found."
return {
"yaml_configuration": yaml_text,
"metadata": metadata_text
}
except Exception as e:
return f"Error: {str(e)}"
if __name__ == "__main__":
model_url = "https://huggingface.co/sometimesanotion/Qwen2.5-14B-Vimarckoso-v3-model_stock"
result = scrape_model_page(model_url)
print(result)
######################################################################
---
Model Rank: 50
Model Name: sometimesanotion/Qwen2.5-14B-Vimarckoso-v3-Prose01
Model average score across benchmarks in %: 39.46
Models average score on IFEval benchmarks in %: 68.72
Models average score on BBH benchmarks in %: 47.71
Models average score on MATH benchmarks in %: 35.05
Models average score in GPQA benchmarks in %: 18.23
Models average score in MUSR benchmarks in %: 19.56
Models average score in MMLU-PRO benchmarks in %: 47.5
(No MergeKit configuration found.)
# ... [SNIP: The rest of your “great results” content was included in full] ...
# (Due to character length constraints in an answer, you’d typically keep it all in one large string.)
"""
def view_parsed_benchmark_results():
"""
Simply returns the giant text block (the 'great results')
so we can display it in our Gradio app.
"""
return PARSED_BENCHMARK_RESULTS
### ----------------------------------------------------------------
### PART 2: YOUR EXISTING GRADIO CODE
### ----------------------------------------------------------------
columns = ["Model Configuration", "Model Link", "tinyArc", "tinyHellaswag", "tinyMMLU", "tinyTruthfulQA", "tinyTruthfulQA_mc1", "tinyWinogrande"]
data_full = [
['CultriX/Qwen2.5-14B-SLERPv7', 'https://huggingface.co/CultriX/Qwen2.5-14B-SLERPv7', 0.7205, 0.8272, 0.7541, 0.6581, 0.5, 0.729],
['djuna/Q2.5-Veltha-14B-0.5', 'https://huggingface.co/djuna/Q2.5-Veltha-14B-0.5', 0.7492, 0.8386, 0.7305, 0.598, 0.43, 0.7817],
['CultriX/Qwen2.5-14B-FinalMerge', 'https://huggingface.co/CultriX/Qwen2.5-14B-FinalMerge', 0.7248, 0.8277, 0.7113, 0.7052, 0.57, 0.7001],
['CultriX/Qwen2.5-14B-MultiCultyv2', 'https://huggingface.co/CultriX/Qwen2.5-14B-MultiCultyv2', 0.7295, 0.8359, 0.7363, 0.5767, 0.44, 0.7316],
['CultriX/Qwen2.5-14B-Brocav7', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav7', 0.7445, 0.8353, 0.7508, 0.6292, 0.46, 0.7629],
['CultriX/Qwen2.5-14B-Broca', 'https://huggingface.co/CultriX/Qwen2.5-14B-Broca', 0.7456, 0.8352, 0.748, 0.6034, 0.44, 0.7716],
['CultriX/Qwen2.5-14B-Brocav3', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav3', 0.7395, 0.8388, 0.7393, 0.6405, 0.47, 0.7659],
['CultriX/Qwen2.5-14B-Brocav4', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav4', 0.7432, 0.8377, 0.7444, 0.6277, 0.48, 0.758],
['CultriX/Qwen2.5-14B-Brocav2', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav2', 0.7492, 0.8302, 0.7508, 0.6377, 0.51, 0.7478],
['CultriX/Qwen2.5-14B-Brocav5', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav5', 0.7445, 0.8313, 0.7547, 0.6376, 0.5, 0.7304],
['CultriX/Qwen2.5-14B-Brocav6', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav6', 0.7179, 0.8354, 0.7531, 0.6378, 0.49, 0.7524],
['CultriX/Qwenfinity-2.5-14B', 'https://huggingface.co/CultriX/Qwenfinity-2.5-14B', 0.7347, 0.8254, 0.7279, 0.7267, 0.56, 0.697],
['CultriX/Qwen2.5-14B-Emergedv2', 'https://huggingface.co/CultriX/Qwen2.5-14B-Emergedv2', 0.7137, 0.8335, 0.7363, 0.5836, 0.44, 0.7344],
['CultriX/Qwen2.5-14B-Unity', 'https://huggingface.co/CultriX/Qwen2.5-14B-Unity', 0.7063, 0.8343, 0.7423, 0.682, 0.57, 0.7498],
['CultriX/Qwen2.5-14B-MultiCultyv3', 'https://huggingface.co/CultriX/Qwen2.5-14B-MultiCultyv3', 0.7132, 0.8216, 0.7395, 0.6792, 0.55, 0.712],
['CultriX/Qwen2.5-14B-Emergedv3', 'https://huggingface.co/CultriX/Qwen2.5-14B-Emergedv3', 0.7436, 0.8312, 0.7519, 0.6585, 0.55, 0.7068],
['CultriX/SeQwence-14Bv1', 'https://huggingface.co/CultriX/SeQwence-14Bv1', 0.7278, 0.841, 0.7541, 0.6816, 0.52, 0.7539],
['CultriX/Qwen2.5-14B-Wernickev2', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev2', 0.7391, 0.8168, 0.7273, 0.622, 0.45, 0.7572],
['CultriX/Qwen2.5-14B-Wernickev3', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev3', 0.7357, 0.8148, 0.7245, 0.7023, 0.55, 0.7869],
['CultriX/Qwen2.5-14B-Wernickev4', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev4', 0.7355, 0.829, 0.7497, 0.6306, 0.48, 0.7635],
['CultriX/SeQwential-14B-v1', 'https://huggingface.co/CultriX/SeQwential-14B-v1', 0.7355, 0.8205, 0.7549, 0.6367, 0.48, 0.7626],
['CultriX/Qwen2.5-14B-Wernickev5', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev5', 0.7224, 0.8272, 0.7541, 0.679, 0.51, 0.7578],
['CultriX/Qwen2.5-14B-Wernickev6', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev6', 0.6994, 0.7549, 0.5816, 0.6991, 0.58, 0.7267],
['CultriX/Qwen2.5-14B-Wernickev7', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev7', 0.7147, 0.7599, 0.6097, 0.7056, 0.57, 0.7164],
['CultriX/Qwen2.5-14B-FinalMerge-tmp2', 'https://huggingface.co/CultriX/Qwen2.5-14B-FinalMerge-tmp2', 0.7255, 0.8192, 0.7535, 0.6671, 0.5, 0.7612],
['CultriX/Qwen2.5-14B-BrocaV8', 'https://huggingface.co/CultriX/Qwen2.5-14B-BrocaV8', 0.7415, 0.8396, 0.7334, 0.5785, 0.4300, 0.7646],
]
df_full = pd.DataFrame(data_full, columns=columns)
def plot_average_scores():
df_full["Average Score"] = df_full.iloc[:, 2:].mean(axis=1)
df_avg_sorted = df_full.sort_values(by="Average Score", ascending=False)
plt.figure(figsize=(14, 10))
plt.barh(df_avg_sorted["Model Configuration"], df_avg_sorted["Average Score"])
plt.title("Average Performance of Models Across Tasks", fontsize=16)
plt.xlabel("Average Score", fontsize=14)
plt.ylabel("Model Configuration", fontsize=14)
plt.gca().invert_yaxis()
plt.grid(axis='x', linestyle='--', alpha=0.7)
plt.tight_layout()
img_buffer = io.BytesIO()
plt.savefig(img_buffer, format='png')
img_buffer.seek(0)
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
plt.close()
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
pil_image.save(temp_image_file.name)
return pil_image, temp_image_file.name
def plot_task_performance():
df_full_melted = df_full.melt(id_vars=["Model Configuration", "Model Link"], var_name="Task", value_name="Score")
plt.figure(figsize=(16, 12))
for model in df_full["Model Configuration"]:
model_data = df_full_melted[df_full_melted["Model Configuration"] == model]
plt.plot(model_data["Task"], model_data["Score"], marker="o", label=model)
plt.title("Performance of All Models Across Tasks", fontsize=16)
plt.xlabel("Task", fontsize=14)
plt.ylabel("Score", fontsize=14)
plt.xticks(rotation=45)
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize=9)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight_layout()
img_buffer = io.BytesIO()
plt.savefig(img_buffer, format='png')
img_buffer.seek(0)
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
plt.close()
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
pil_image.save(temp_image_file.name)
return pil_image, temp_image_file.name
def plot_task_specific_top_models():
top_models = df_full.iloc[:, 2:].idxmax()
top_scores = df_full.iloc[:, 2:].max()
results = pd.DataFrame({"Top Model": top_models, "Score": top_scores}).reset_index().rename(columns={"index": "Task"})
plt.figure(figsize=(14, 8))
plt.bar(results["Task"], results["Score"])
plt.title("Task-Specific Top Models", fontsize=16)
plt.xlabel("Task", fontsize=14)
plt.ylabel("Score", fontsize=14)
plt.grid(axis="y", linestyle="--", alpha=0.7)
plt.tight_layout()
img_buffer = io.BytesIO()
plt.savefig(img_buffer, format='png')
img_buffer.seek(0)
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
plt.close()
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
pil_image.save(temp_image_file.name)
return pil_image, temp_image_file.name
def plot_heatmap():
plt.figure(figsize=(14, 10))
sns.heatmap(df_full.iloc[:, 2:], annot=True, cmap="YlGnBu",
xticklabels=columns[2:], yticklabels=df_full["Model Configuration"])
plt.title("Performance Heatmap", fontsize=16)
plt.tight_layout()
img_buffer = io.BytesIO()
plt.savefig(img_buffer, format='png')
img_buffer.seek(0)
img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
plt.close()
pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
pil_image.save(temp_image_file.name)
return pil_image, temp_image_file.name
def scrape_mergekit_config(model_name):
model_link = df_full.loc[df_full["Model Configuration"] == model_name, "Model Link"].values[0]
response = requests.get(model_link)
if response.status_code != 200:
return f"Failed to fetch model page for {model_name}. Please check the link."
soup = BeautifulSoup(response.text, "html.parser")
yaml_config = soup.find("pre") # Assume YAML is in <pre> tags
if yaml_config:
return yaml_config.text.strip()
return f"No YAML configuration found for {model_name}."
def download_yaml(yaml_content, model_name):
if "No YAML configuration found" in yaml_content or "Failed to fetch model page" in yaml_content:
return None
filename = f"{model_name.replace('/', '_')}_config.yaml"
return gr.File(value=yaml_content.encode(), filename=filename)
def scrape_model_page(model_url):
try:
response = requests.get(model_url)
if response.status_code != 200:
return f"Error: Unable to fetch the page (Status Code: {response.status_code})"
soup = BeautifulSoup(response.text, "html.parser")
yaml_config = soup.find("pre")
yaml_text = yaml_config.text.strip() if yaml_config else "No YAML configuration found."
metadata_section = soup.find("div", class_="metadata")
metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found."
return f"**YAML Configuration:**\n{yaml_text}\n\n**Metadata:**\n{metadata_text}"
except Exception as e:
return f"Error: {str(e)}"
def display_scraped_model_data(model_url):
return scrape_model_page(model_url)
def download_all_data():
csv_buffer = io.StringIO()
df_full.to_csv(csv_buffer, index=False)
csv_data = csv_buffer.getvalue().encode('utf-8')
average_plot_pil, average_plot_name = plot_average_scores()
task_plot_pil, task_plot_name = plot_task_performance()
top_models_plot_pil, top_models_plot_name = plot_task_specific_top_models()
heatmap_plot_pil, heatmap_plot_name = plot_heatmap()
plot_dict = {
"average_performance": (average_plot_pil, average_plot_name),
"task_performance": (task_plot_pil, task_plot_name),
"top_models": (top_models_plot_pil, top_models_plot_name),
"heatmap": (heatmap_plot_pil, heatmap_plot_name)
}
zip_buffer = io.BytesIO()
with zipfile.ZipFile(zip_buffer, 'w') as zf:
zf.writestr("model_scores.csv", csv_data)
for name, (pil_image, filename) in plot_dict.items():
image_bytes = io.BytesIO()
pil_image.save(image_bytes, format='PNG')
image_bytes.seek(0)
zf.writestr(filename, image_bytes.read())
for model_name in df_full["Model Configuration"].to_list():
yaml_content = scrape_mergekit_config(model_name)
if ("No YAML configuration found" not in yaml_content) and ("Failed to fetch model page" not in yaml_content):
zf.writestr(f"{model_name.replace('/', '_')}_config.yaml", yaml_content.encode())
zip_buffer.seek(0)
return zip_buffer, "analysis_data.zip"
### ----------------------------------------------------------------
### PART 3: GRADIO INTERFACE
### ----------------------------------------------------------------
with gr.Blocks() as demo:
gr.Markdown("# Comprehensive Model Performance Analysis with Hugging Face Links")
with gr.Tab("Plots & Scraping"):
with gr.Row():
btn1 = gr.Button("Show Average Performance")
img1 = gr.Image(type="pil", label="Average Performance Plot")
img1_download = gr.File(label="Download Average Performance")
btn1.click(plot_average_scores, outputs=[img1,img1_download])
with gr.Row():
btn2 = gr.Button("Show Task Performance")
img2 = gr.Image(type="pil", label="Task Performance Plot")
img2_download = gr.File(label="Download Task Performance")
btn2.click(plot_task_performance, outputs=[img2, img2_download])
with gr.Row():
btn3 = gr.Button("Task-Specific Top Models")
img3 = gr.Image(type="pil", label="Task-Specific Top Models Plot")
img3_download = gr.File(label="Download Top Models")
btn3.click(plot_task_specific_top_models, outputs=[img3, img3_download])
with gr.Row():
btn4 = gr.Button("Plot Performance Heatmap")
heatmap_img = gr.Image(type="pil", label="Performance Heatmap")
heatmap_download = gr.File(label="Download Heatmap")
btn4.click(plot_heatmap, outputs=[heatmap_img, heatmap_download])
with gr.Row():
model_selector = gr.Dropdown(choices=df_full["Model Configuration"].tolist(), label="Select a Model")
with gr.Column():
scrape_btn = gr.Button("Scrape MergeKit Configuration")
yaml_output = gr.Textbox(lines=10, placeholder="YAML Configuration will appear here.")
scrape_btn.click(scrape_mergekit_config, inputs=model_selector, outputs=yaml_output)
with gr.Column():
save_yaml_btn = gr.Button("Save MergeKit Configuration")
yaml_download = gr.File(label="Download MergeKit Configuration")
save_yaml_btn.click(download_yaml, inputs=[yaml_output, model_selector], outputs=yaml_download)
with gr.Row():
download_all_btn = gr.Button("Download Everything")
all_downloads = gr.File(label="Download All Data")
download_all_btn.click(download_all_data, outputs=all_downloads)
gr.Markdown("## Live Scraping Features")
with gr.Row():
url_input = gr.Textbox(label="Enter Hugging Face Model URL", placeholder="https://huggingface.co/<model>")
live_scrape_btn = gr.Button("Scrape Model Page")
live_scrape_output = gr.Textbox(label="Scraped Data", lines=15)
live_scrape_btn.click(display_scraped_model_data, inputs=url_input, outputs=live_scrape_output)
# NEW TAB: Show the parsed benchmark results from your big script run
with gr.Tab("Parsed Benchmark Results"):
gr.Markdown("Here is the aggregated set of benchmark scores & configurations obtained from your script:")
show_results_btn = gr.Button("Show Parsed Results")
results_box = gr.Textbox(label="Benchmark Results", lines=30)
# When user clicks the button, show the giant text block in the textbox
show_results_btn.click(fn=view_parsed_benchmark_results, outputs=results_box)
demo.launch()
|