File size: 20,456 Bytes
17aa8f3
982fdda
bdbadad
90cb3d2
07b8fd8
 
a2b3402
 
 
 
 
 
b61d487
a2b3402
4937ac7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90cb3d2
85e629e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4937ac7
90cb3d2
 
 
a2b3402
 
 
b61d487
7c4b72f
a2b3402
 
 
 
 
 
 
b61d487
 
 
 
 
 
 
 
 
 
 
a2b3402
 
 
b61d487
7c4b72f
a2b3402
 
 
b61d487
a2b3402
 
 
 
 
 
 
b61d487
 
 
 
 
 
 
 
 
 
 
a2b3402
 
 
 
b61d487
a2b3402
b61d487
7c4b72f
a2b3402
 
 
 
 
 
 
b61d487
 
 
 
 
 
 
 
 
 
 
7c4b72f
4937ac7
 
b61d487
 
 
 
 
 
 
 
 
 
 
 
 
4937ac7
 
 
 
 
 
 
 
 
 
 
 
b61d487
 
4937ac7
b61d487
 
 
a2b3402
4937ac7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2b3402
 
 
 
b61d487
 
 
 
 
 
 
 
 
 
 
 
a2b3402
 
 
 
c56b33e
b61d487
 
 
 
 
 
 
 
4937ac7
 
b61d487
 
010c7bd
b2fd468
b61d487
4937ac7
 
 
b61d487
90cb3d2
a2b3402
b61d487
4937ac7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b61d487
4937ac7
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import gradio as gr
import requests
from bs4 import BeautifulSoup
import io
import os
import base64
import zipfile
from PIL import Image
from io import BytesIO
import tempfile

### ----------------------------------------------------------------
### PART 1: "PARSED BENCHMARK RESULTS" SECTION
### ----------------------------------------------------------------

# This text is the exact content from your "great results" output.
# If you want to dynamically run the script again to produce the text each time,
# you can integrate the script's logic. But here, we simply store the final output.
PARSED_BENCHMARK_RESULTS = """\
### RESULTS ###
---
Model Rank: 44
Model Name: sometimesanotion/Qwen2.5-14B-Vimarckoso-v3
Model average score across benchmarks in %: 40.1
Models average score on IFEval benchmarks in %: 72.57
Models average score on BBH benchmarks in %: 48.58
Models average score on MATH benchmarks in %: 34.44
Models average score in GPQA benchmarks in %: 17.34
Models average score in MUSR benchmarks in %: 19.39
Models average score in MMLU-PRO benchmarks in %: 48.26
###
models:
  - model: CultriX/SeQwence-14Bv1
  - model: allknowingroger/Qwenslerp5-14B
merge_method: slerp
base_model: CultriX/SeQwence-14Bv1
dtype: bfloat16
parameters:
  t: [0, 0.5, 1, 0.5, 0] # V shaped curve: Hermes for input & output, WizardMath in the middle layers
###
---
Model Rank: 45
Model Name: sthenno-com/miscii-14b-1225
Model average score across benchmarks in %: 40.08
Models average score on IFEval benchmarks in %: 78.78
Models average score on BBH benchmarks in %: 50.91
Models average score on MATH benchmarks in %: 31.57
Models average score in GPQA benchmarks in %: 17.0
Models average score in MUSR benchmarks in %: 14.77
Models average score in MMLU-PRO benchmarks in %: 47.46
###
tokenizer_source: "base"
chat_template: "chatml"

merge_method: ties
dtype: bfloat16

parameters:
  normalize: true

base_model: sthenno-com/miscii-14b-1028

models:
  - model: sthenno-com/miscii-14b-1028
    parameters:
      weight: 1
      density: 0.5
  - model: sthenno/miscii-1218
    parameters:
      weight: 1
      density: 0.5
  - model: sthenno/exp-002
    parameters:
      weight: 0.9
      density: 0.5
  - model: sthenno/miscii-1218
    parameters:
      weight: 0.6
      density: 0.5
###
---
Model Rank: 46
Model Name: djuna/Q2.5-Veltha-14B-0.5
Model average score across benchmarks in %: 39.96
Models average score on IFEval benchmarks in %: 77.96
Models average score on BBH benchmarks in %: 50.32
Models average score on MATH benchmarks in %: 33.84
Models average score in GPQA benchmarks in %: 15.77
Models average score in MUSR benchmarks in %: 14.17
Models average score in MMLU-PRO benchmarks in %: 47.72
###
merge_method: della_linear
dtype: float32
out_dtype: bfloat16
parameters:
  epsilon: 0.04
  lambda: 1.05
  normalize: true
base_model: arcee-ai/SuperNova-Medius
tokenizer_source: arcee-ai/SuperNova-Medius
models:
  - model: arcee-ai/SuperNova-Medius
    parameters:
      weight: 10
      density: 1
  - model: EVA-UNIT-01/EVA-Qwen2.5-14B-v0.2
    parameters:
      weight: 7
      density: 0.5
  - model: v000000/Qwen2.5-Lumen-14B
    parameters:
      weight: 7
      density: 0.4
  - model: allura-org/TQ2.5-14B-Aletheia-v1
    parameters:
      weight: 8
      density: 0.4
  - model: huihui-ai/Qwen2.5-14B-Instruct-abliterated-v2
    parameters:
      weight: 8
      density: 0.45
###
---
Model Rank: 48
Model Name: sometimesanotion/Qwen2.5-14B-Vimarckoso-v3-model_stock
Model average score across benchmarks in %: 39.81
Models average score on IFEval benchmarks in %: 71.62
Models average score on BBH benchmarks in %: 48.76
Models average score on MATH benchmarks in %: 33.99
Models average score in GPQA benchmarks in %: 17.34
Models average score in MUSR benchmarks in %: 19.23
Models average score in MMLU-PRO benchmarks in %: 47.95
(No MergeKit configuration found.)

You can try the following Python script to scrape the model page:
######################################################################
import requests
from bs4 import BeautifulSoup

def scrape_model_page(model_url):
    try:
        response = requests.get(model_url)
        if response.status_code != 200:
            return f"Error: Unable to fetch the page (Status Code: {response.status_code})"

        soup = BeautifulSoup(response.text, "html.parser")

        yaml_config = soup.find("pre")
        yaml_text = yaml_config.text.strip() if yaml_config else "No YAML configuration found."

        metadata_section = soup.find("div", class_="metadata")
        metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found."

        return {
            "yaml_configuration": yaml_text,
            "metadata": metadata_text
        }

    except Exception as e:
        return f"Error: {str(e)}"

if __name__ == "__main__":
    model_url = "https://huggingface.co/sometimesanotion/Qwen2.5-14B-Vimarckoso-v3-model_stock"
    result = scrape_model_page(model_url)
    print(result)
######################################################################
---
Model Rank: 50
Model Name: sometimesanotion/Qwen2.5-14B-Vimarckoso-v3-Prose01
Model average score across benchmarks in %: 39.46
Models average score on IFEval benchmarks in %: 68.72
Models average score on BBH benchmarks in %: 47.71
Models average score on MATH benchmarks in %: 35.05
Models average score in GPQA benchmarks in %: 18.23
Models average score in MUSR benchmarks in %: 19.56
Models average score in MMLU-PRO benchmarks in %: 47.5
(No MergeKit configuration found.)

# ... [SNIP: The rest of your “great results” content was included in full] ...
# (Due to character length constraints in an answer, you’d typically keep it all in one large string.)
"""


def view_parsed_benchmark_results():
    """
    Simply returns the giant text block (the 'great results') 
    so we can display it in our Gradio app.
    """
    return PARSED_BENCHMARK_RESULTS


### ----------------------------------------------------------------
### PART 2: YOUR EXISTING GRADIO CODE
### ----------------------------------------------------------------

columns = ["Model Configuration", "Model Link", "tinyArc", "tinyHellaswag", "tinyMMLU", "tinyTruthfulQA", "tinyTruthfulQA_mc1", "tinyWinogrande"]

data_full = [
    ['CultriX/Qwen2.5-14B-SLERPv7', 'https://huggingface.co/CultriX/Qwen2.5-14B-SLERPv7', 0.7205, 0.8272, 0.7541, 0.6581, 0.5, 0.729],
    ['djuna/Q2.5-Veltha-14B-0.5', 'https://huggingface.co/djuna/Q2.5-Veltha-14B-0.5', 0.7492, 0.8386, 0.7305, 0.598, 0.43, 0.7817],
    ['CultriX/Qwen2.5-14B-FinalMerge', 'https://huggingface.co/CultriX/Qwen2.5-14B-FinalMerge', 0.7248, 0.8277, 0.7113, 0.7052, 0.57, 0.7001],
    ['CultriX/Qwen2.5-14B-MultiCultyv2', 'https://huggingface.co/CultriX/Qwen2.5-14B-MultiCultyv2', 0.7295, 0.8359, 0.7363, 0.5767, 0.44, 0.7316],
    ['CultriX/Qwen2.5-14B-Brocav7', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav7', 0.7445, 0.8353, 0.7508, 0.6292, 0.46, 0.7629],
    ['CultriX/Qwen2.5-14B-Broca', 'https://huggingface.co/CultriX/Qwen2.5-14B-Broca', 0.7456, 0.8352, 0.748, 0.6034, 0.44, 0.7716],
    ['CultriX/Qwen2.5-14B-Brocav3', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav3', 0.7395, 0.8388, 0.7393, 0.6405, 0.47, 0.7659],
    ['CultriX/Qwen2.5-14B-Brocav4', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav4', 0.7432, 0.8377, 0.7444, 0.6277, 0.48, 0.758],
    ['CultriX/Qwen2.5-14B-Brocav2', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav2', 0.7492, 0.8302, 0.7508, 0.6377, 0.51, 0.7478],
    ['CultriX/Qwen2.5-14B-Brocav5', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav5', 0.7445, 0.8313, 0.7547, 0.6376, 0.5, 0.7304],
    ['CultriX/Qwen2.5-14B-Brocav6', 'https://huggingface.co/CultriX/Qwen2.5-14B-Brocav6', 0.7179, 0.8354, 0.7531, 0.6378, 0.49, 0.7524],
    ['CultriX/Qwenfinity-2.5-14B', 'https://huggingface.co/CultriX/Qwenfinity-2.5-14B', 0.7347, 0.8254, 0.7279, 0.7267, 0.56, 0.697],
    ['CultriX/Qwen2.5-14B-Emergedv2', 'https://huggingface.co/CultriX/Qwen2.5-14B-Emergedv2', 0.7137, 0.8335, 0.7363, 0.5836, 0.44, 0.7344],
    ['CultriX/Qwen2.5-14B-Unity', 'https://huggingface.co/CultriX/Qwen2.5-14B-Unity', 0.7063, 0.8343, 0.7423, 0.682, 0.57, 0.7498],
    ['CultriX/Qwen2.5-14B-MultiCultyv3', 'https://huggingface.co/CultriX/Qwen2.5-14B-MultiCultyv3', 0.7132, 0.8216, 0.7395, 0.6792, 0.55, 0.712],
    ['CultriX/Qwen2.5-14B-Emergedv3', 'https://huggingface.co/CultriX/Qwen2.5-14B-Emergedv3', 0.7436, 0.8312, 0.7519, 0.6585, 0.55, 0.7068],
    ['CultriX/SeQwence-14Bv1', 'https://huggingface.co/CultriX/SeQwence-14Bv1', 0.7278, 0.841, 0.7541, 0.6816, 0.52, 0.7539],
    ['CultriX/Qwen2.5-14B-Wernickev2', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev2', 0.7391, 0.8168, 0.7273, 0.622, 0.45, 0.7572],
    ['CultriX/Qwen2.5-14B-Wernickev3', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev3', 0.7357, 0.8148, 0.7245, 0.7023, 0.55, 0.7869],
    ['CultriX/Qwen2.5-14B-Wernickev4', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev4', 0.7355, 0.829, 0.7497, 0.6306, 0.48, 0.7635],
    ['CultriX/SeQwential-14B-v1', 'https://huggingface.co/CultriX/SeQwential-14B-v1', 0.7355, 0.8205, 0.7549, 0.6367, 0.48, 0.7626],
    ['CultriX/Qwen2.5-14B-Wernickev5', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev5', 0.7224, 0.8272, 0.7541, 0.679, 0.51, 0.7578],
    ['CultriX/Qwen2.5-14B-Wernickev6', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev6', 0.6994, 0.7549, 0.5816, 0.6991, 0.58, 0.7267],
    ['CultriX/Qwen2.5-14B-Wernickev7', 'https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev7', 0.7147, 0.7599, 0.6097, 0.7056, 0.57, 0.7164],
    ['CultriX/Qwen2.5-14B-FinalMerge-tmp2', 'https://huggingface.co/CultriX/Qwen2.5-14B-FinalMerge-tmp2', 0.7255, 0.8192, 0.7535, 0.6671, 0.5, 0.7612],
    ['CultriX/Qwen2.5-14B-BrocaV8', 'https://huggingface.co/CultriX/Qwen2.5-14B-BrocaV8', 0.7415, 0.8396, 0.7334, 0.5785, 0.4300, 0.7646],
]
df_full = pd.DataFrame(data_full, columns=columns)

def plot_average_scores():
    df_full["Average Score"] = df_full.iloc[:, 2:].mean(axis=1)
    df_avg_sorted = df_full.sort_values(by="Average Score", ascending=False)

    plt.figure(figsize=(14, 10))
    plt.barh(df_avg_sorted["Model Configuration"], df_avg_sorted["Average Score"])
    plt.title("Average Performance of Models Across Tasks", fontsize=16)
    plt.xlabel("Average Score", fontsize=14)
    plt.ylabel("Model Configuration", fontsize=14)
    plt.gca().invert_yaxis()
    plt.grid(axis='x', linestyle='--', alpha=0.7)
    plt.tight_layout()
    
    img_buffer = io.BytesIO()
    plt.savefig(img_buffer, format='png')
    img_buffer.seek(0)
    img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
    plt.close()

    pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
    temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
    pil_image.save(temp_image_file.name)
    return pil_image, temp_image_file.name

def plot_task_performance():
    df_full_melted = df_full.melt(id_vars=["Model Configuration", "Model Link"], var_name="Task", value_name="Score")

    plt.figure(figsize=(16, 12))
    for model in df_full["Model Configuration"]:
        model_data = df_full_melted[df_full_melted["Model Configuration"] == model]
        plt.plot(model_data["Task"], model_data["Score"], marker="o", label=model)

    plt.title("Performance of All Models Across Tasks", fontsize=16)
    plt.xlabel("Task", fontsize=14)
    plt.ylabel("Score", fontsize=14)
    plt.xticks(rotation=45)
    plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize=9)
    plt.grid(axis='y', linestyle='--', alpha=0.7)
    plt.tight_layout()
    
    img_buffer = io.BytesIO()
    plt.savefig(img_buffer, format='png')
    img_buffer.seek(0)
    img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
    plt.close()

    pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
    temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
    pil_image.save(temp_image_file.name)
    return pil_image, temp_image_file.name

def plot_task_specific_top_models():
    top_models = df_full.iloc[:, 2:].idxmax()
    top_scores = df_full.iloc[:, 2:].max()

    results = pd.DataFrame({"Top Model": top_models, "Score": top_scores}).reset_index().rename(columns={"index": "Task"})

    plt.figure(figsize=(14, 8))
    plt.bar(results["Task"], results["Score"])
    plt.title("Task-Specific Top Models", fontsize=16)
    plt.xlabel("Task", fontsize=14)
    plt.ylabel("Score", fontsize=14)
    plt.grid(axis="y", linestyle="--", alpha=0.7)
    plt.tight_layout()

    img_buffer = io.BytesIO()
    plt.savefig(img_buffer, format='png')
    img_buffer.seek(0)
    img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
    plt.close()
    pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
    temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
    pil_image.save(temp_image_file.name)
    return pil_image, temp_image_file.name

def plot_heatmap():
    plt.figure(figsize=(14, 10))
    sns.heatmap(df_full.iloc[:, 2:], annot=True, cmap="YlGnBu", 
                xticklabels=columns[2:], yticklabels=df_full["Model Configuration"])
    plt.title("Performance Heatmap", fontsize=16)
    plt.tight_layout()
    
    img_buffer = io.BytesIO()
    plt.savefig(img_buffer, format='png')
    img_buffer.seek(0)
    img_base64 = base64.b64encode(img_buffer.read()).decode('utf-8')
    plt.close()
    pil_image = Image.open(BytesIO(base64.b64decode(img_base64)))
    temp_image_file = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
    pil_image.save(temp_image_file.name)
    return pil_image, temp_image_file.name

def scrape_mergekit_config(model_name):
    model_link = df_full.loc[df_full["Model Configuration"] == model_name, "Model Link"].values[0]
    response = requests.get(model_link)
    if response.status_code != 200:
        return f"Failed to fetch model page for {model_name}. Please check the link."

    soup = BeautifulSoup(response.text, "html.parser")
    yaml_config = soup.find("pre")  # Assume YAML is in <pre> tags
    if yaml_config:
        return yaml_config.text.strip()
    return f"No YAML configuration found for {model_name}."

def download_yaml(yaml_content, model_name):
    if "No YAML configuration found" in yaml_content or "Failed to fetch model page" in yaml_content:
        return None
    
    filename = f"{model_name.replace('/', '_')}_config.yaml"
    return gr.File(value=yaml_content.encode(), filename=filename)

def scrape_model_page(model_url):
    try:
        response = requests.get(model_url)
        if response.status_code != 200:
            return f"Error: Unable to fetch the page (Status Code: {response.status_code})"
        
        soup = BeautifulSoup(response.text, "html.parser")
        yaml_config = soup.find("pre")
        yaml_text = yaml_config.text.strip() if yaml_config else "No YAML configuration found."
        metadata_section = soup.find("div", class_="metadata")
        metadata_text = metadata_section.text.strip() if metadata_section else "No metadata found."
        return f"**YAML Configuration:**\n{yaml_text}\n\n**Metadata:**\n{metadata_text}"
    except Exception as e:
        return f"Error: {str(e)}"

def display_scraped_model_data(model_url):
    return scrape_model_page(model_url)

def download_all_data():
    csv_buffer = io.StringIO()
    df_full.to_csv(csv_buffer, index=False)
    csv_data = csv_buffer.getvalue().encode('utf-8')
    
    average_plot_pil, average_plot_name = plot_average_scores()
    task_plot_pil, task_plot_name = plot_task_performance()
    top_models_plot_pil, top_models_plot_name = plot_task_specific_top_models()
    heatmap_plot_pil, heatmap_plot_name = plot_heatmap()

    plot_dict = {
        "average_performance": (average_plot_pil, average_plot_name),
        "task_performance": (task_plot_pil, task_plot_name),
        "top_models": (top_models_plot_pil, top_models_plot_name),
        "heatmap": (heatmap_plot_pil, heatmap_plot_name)
    }

    zip_buffer = io.BytesIO()
    with zipfile.ZipFile(zip_buffer, 'w') as zf:
        zf.writestr("model_scores.csv", csv_data)

        for name, (pil_image, filename) in plot_dict.items():
            image_bytes = io.BytesIO()
            pil_image.save(image_bytes, format='PNG')
            image_bytes.seek(0)
            zf.writestr(filename, image_bytes.read())

        for model_name in df_full["Model Configuration"].to_list():
            yaml_content = scrape_mergekit_config(model_name)
            if ("No YAML configuration found" not in yaml_content) and ("Failed to fetch model page" not in yaml_content):
                zf.writestr(f"{model_name.replace('/', '_')}_config.yaml", yaml_content.encode())

    zip_buffer.seek(0)
    return zip_buffer, "analysis_data.zip"


### ----------------------------------------------------------------
### PART 3: GRADIO INTERFACE
### ----------------------------------------------------------------

with gr.Blocks() as demo:
    gr.Markdown("# Comprehensive Model Performance Analysis with Hugging Face Links")
    
    with gr.Tab("Plots & Scraping"):
        with gr.Row():
            btn1 = gr.Button("Show Average Performance")
            img1 = gr.Image(type="pil", label="Average Performance Plot")
            img1_download = gr.File(label="Download Average Performance")
            btn1.click(plot_average_scores, outputs=[img1,img1_download])
            
        with gr.Row():
            btn2 = gr.Button("Show Task Performance")
            img2 = gr.Image(type="pil", label="Task Performance Plot")
            img2_download = gr.File(label="Download Task Performance")
            btn2.click(plot_task_performance, outputs=[img2, img2_download])

        with gr.Row():
            btn3 = gr.Button("Task-Specific Top Models")
            img3 = gr.Image(type="pil", label="Task-Specific Top Models Plot")
            img3_download = gr.File(label="Download Top Models")
            btn3.click(plot_task_specific_top_models, outputs=[img3, img3_download])
        
        with gr.Row():
            btn4 = gr.Button("Plot Performance Heatmap")
            heatmap_img = gr.Image(type="pil", label="Performance Heatmap")
            heatmap_download = gr.File(label="Download Heatmap")
            btn4.click(plot_heatmap, outputs=[heatmap_img, heatmap_download])

        with gr.Row():
            model_selector = gr.Dropdown(choices=df_full["Model Configuration"].tolist(), label="Select a Model")
            with gr.Column():
                scrape_btn = gr.Button("Scrape MergeKit Configuration")
                yaml_output = gr.Textbox(lines=10, placeholder="YAML Configuration will appear here.")
                scrape_btn.click(scrape_mergekit_config, inputs=model_selector, outputs=yaml_output)
            with gr.Column():
                save_yaml_btn = gr.Button("Save MergeKit Configuration")
                yaml_download = gr.File(label="Download MergeKit Configuration")
                save_yaml_btn.click(download_yaml, inputs=[yaml_output, model_selector], outputs=yaml_download)

        with gr.Row():
            download_all_btn = gr.Button("Download Everything")
            all_downloads = gr.File(label="Download All Data")
            download_all_btn.click(download_all_data, outputs=all_downloads)
            
        gr.Markdown("## Live Scraping Features")
        with gr.Row():
            url_input = gr.Textbox(label="Enter Hugging Face Model URL", placeholder="https://huggingface.co/<model>")
            live_scrape_btn = gr.Button("Scrape Model Page")
            live_scrape_output = gr.Textbox(label="Scraped Data", lines=15)
            live_scrape_btn.click(display_scraped_model_data, inputs=url_input, outputs=live_scrape_output)

    # NEW TAB: Show the parsed benchmark results from your big script run
    with gr.Tab("Parsed Benchmark Results"):
        gr.Markdown("Here is the aggregated set of benchmark scores & configurations obtained from your script:")
        show_results_btn = gr.Button("Show Parsed Results")
        results_box = gr.Textbox(label="Benchmark Results", lines=30)
        
        # When user clicks the button, show the giant text block in the textbox
        show_results_btn.click(fn=view_parsed_benchmark_results, outputs=results_box)

demo.launch()