ConvAIChat / app.py
CreitinGameplays's picture
Update app.py
0eb1946 verified
raw
history blame
2.91 kB
import gradio as gr
import torch
import spaces
import bitsandbytes as bnb
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
# Define the model name
model_name = "CreitinGameplays/ConvAI-9b"
# Quantization configuration with bitsandbytes settings
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=bnb_config, low_cpu_mem_usage=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#model.to(device)
# Initialize chat history
chat_history = []
@spaces.GPU(duration=120)
def generate_text(user_prompt, top_p, top_k, temperature):
"""Generates text using the ConvAI model from Hugging Face Transformers and maintains conversation history."""
# System introduction
system = "You are a helpful AI language model called ChatGPT, your goal is helping users with their questions."
# Append user prompt to chat history
chat_history.append(f"User: {user_prompt}")
# Construct the full prompt with system introduction, user prompt, and assistant role
prompt = f"{system} </s> {' '.join(chat_history)} </s>"
# Encode the entire prompt into tokens
prompt_encoded = tokenizer.encode(prompt, return_tensors="pt").to(device)
# Generate text with the complete prompt and limit the maximum length to 256 tokens
output = model.generate(
input_ids=prompt_encoded,
max_length=1550,
num_beams=1,
num_return_sequences=1,
do_sample=True,
top_k=top_k,
top_p=top_p,
temperature=temperature,
repetition_penalty=1.2
)
# Decode the generated token sequence back to text
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
# Extract the assistant's response
assistant_response = generated_text.split("User:")[-1].strip()
chat_history.append(f"Assistant: {assistant_response}")
return "\n".join(chat_history)
def reset_history():
global chat_history
chat_history = []
return "Chat history reset."
# Define the Gradio interface
interface = gr.Interface(
fn=generate_text,
inputs=[
gr.Textbox(label="Text Prompt", value="What's an AI?"),
gr.Slider(0, 1, value=0.9, label="Top-p"),
gr.Slider(1, 100, value=50, step=1, label="Top-k"),
gr.Slider(0.01, 1, value=0.2, label="Temperature")
],
outputs="text",
description="Interact with ConvAI (Loaded with Hugging Face Transformers)",
live=True
)
# Add a button to reset the chat history
interface.add_component(gr.Button(label="Reset Chat History", value=reset_history))
# Launch the Gradio interface
interface.launch()