Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -21,53 +21,67 @@ model = AutoModelForCausalLM.from_pretrained(model_name, quantization_config=bnb
|
|
21 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
#model.to(device)
|
23 |
|
|
|
|
|
|
|
24 |
@spaces.GPU(duration=120)
|
25 |
-
def generate_text(user_prompt):
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
# Define the Gradio interface
|
62 |
interface = gr.Interface(
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
69 |
)
|
70 |
|
|
|
|
|
71 |
|
72 |
# Launch the Gradio interface
|
73 |
interface.launch()
|
|
|
21 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
#model.to(device)
|
23 |
|
24 |
+
# Initialize chat history
|
25 |
+
chat_history = []
|
26 |
+
|
27 |
@spaces.GPU(duration=120)
|
28 |
+
def generate_text(user_prompt, top_p, top_k, temperature):
|
29 |
+
"""Generates text using the ConvAI model from Hugging Face Transformers and maintains conversation history."""
|
30 |
+
# System introduction
|
31 |
+
system = "You are a helpful AI language model called ChatGPT, your goal is helping users with their questions."
|
32 |
+
|
33 |
+
# Append user prompt to chat history
|
34 |
+
chat_history.append(f"User: {user_prompt}")
|
35 |
+
|
36 |
+
# Construct the full prompt with system introduction, user prompt, and assistant role
|
37 |
+
prompt = f"{system} </s> {' '.join(chat_history)} </s>"
|
38 |
+
|
39 |
+
# Encode the entire prompt into tokens
|
40 |
+
prompt_encoded = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
41 |
+
|
42 |
+
# Generate text with the complete prompt and limit the maximum length to 256 tokens
|
43 |
+
output = model.generate(
|
44 |
+
input_ids=prompt_encoded,
|
45 |
+
max_length=1550,
|
46 |
+
num_beams=1,
|
47 |
+
num_return_sequences=1,
|
48 |
+
do_sample=True,
|
49 |
+
top_k=top_k,
|
50 |
+
top_p=top_p,
|
51 |
+
temperature=temperature,
|
52 |
+
repetition_penalty=1.2
|
53 |
+
)
|
54 |
+
|
55 |
+
# Decode the generated token sequence back to text
|
56 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
57 |
+
|
58 |
+
# Extract the assistant's response
|
59 |
+
assistant_response = generated_text.split("User:")[-1].strip()
|
60 |
+
chat_history.append(f"Assistant: {assistant_response}")
|
61 |
+
|
62 |
+
return "\n".join(chat_history)
|
63 |
+
|
64 |
+
def reset_history():
|
65 |
+
global chat_history
|
66 |
+
chat_history = []
|
67 |
+
return "Chat history reset."
|
68 |
|
69 |
# Define the Gradio interface
|
70 |
interface = gr.Interface(
|
71 |
+
fn=generate_text,
|
72 |
+
inputs=[
|
73 |
+
gr.Textbox(label="Text Prompt", value="What's an AI?"),
|
74 |
+
gr.Slider(0, 1, value=0.9, label="Top-p"),
|
75 |
+
gr.Slider(1, 100, value=50, step=1, label="Top-k"),
|
76 |
+
gr.Slider(0.01, 1, value=0.2, label="Temperature")
|
77 |
+
],
|
78 |
+
outputs="text",
|
79 |
+
description="Interact with ConvAI (Loaded with Hugging Face Transformers)",
|
80 |
+
live=True
|
81 |
)
|
82 |
|
83 |
+
# Add a button to reset the chat history
|
84 |
+
interface.add_component(gr.Button(label="Reset Chat History", value=reset_history))
|
85 |
|
86 |
# Launch the Gradio interface
|
87 |
interface.launch()
|