File size: 3,718 Bytes
ae71d4b
 
 
 
27a58ec
ae71d4b
 
 
6e9b076
ae71d4b
 
6e9b076
ae71d4b
 
 
 
 
 
 
b68b40e
68c97ea
82ab075
9d22775
b68b40e
 
 
ae71d4b
 
 
 
 
27fd4f5
 
 
 
 
 
 
bbb7e65
 
 
27fd4f5
5f884be
caaf71e
ae71d4b
 
bbb7e65
ae71d4b
 
 
 
 
 
 
 
 
 
a1ec3a4
ae71d4b
 
 
 
 
 
 
 
 
 
 
 
 
 
6a34194
 
 
 
ae71d4b
 
 
 
 
27fd4f5
 
 
 
 
 
caaf71e
 
27fd4f5
ae71d4b
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import gradio as gr
import librosa
import numpy as np
import torch
import requests

from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan

checkpoint = "microsoft/speecht5_tts"
processor = SpeechT5Processor.from_pretrained(checkpoint)
model = SpeechT5ForTextToSpeech.from_pretrained(checkpoint)
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")

speaker_embeddings = {
    "BDL": "spkemb/cmu_us_bdl_arctic-wav-arctic_a0009.npy",
    "CLB": "spkemb/cmu_us_clb_arctic-wav-arctic_a0144.npy",
    "SLT": "spkemb/cmu_us_slt_arctic-wav-arctic_a0508.npy",
}

def getNews(search_key):
    return requests.get ("https://newsapi.org/v2/everything?q=" +search_key+ "&pageSize=3&apiKey=3bca07c913ec4703a23f6ba03e15b30b").content.decode("utf-8")
#    return requests.get ("https://newsapi.org/v2/top-headlines?country=us&apiKey=3bca07c913ec4703a23f6ba03e15b30b").content.decode("utf-8" )

def getHeadlines():
    return requests.get ("https://newsapi.org/v2/top-headlines?country=us&apiKey=3bca07c913ec4703a23f6ba03e15b30b").content.decode("utf-8")


def predict(text, speaker):
    if len(text.strip()) == 0:
        return (16000, np.zeros(0).astype(np.int16))

    if Interest == "":
        inputs = processor(text=getNews(Interest), 
                           return_tensors="pt")
    else
        inputs = processor(text=getNews(text), 
                           return_tensors="pt")

    # limit input length
    input_ids = inputs["input_ids"]
    input_ids = input_ids[..., :model.config.max_text_positions]
    
    speaker_embedding = np.load("spkemb/cmu_us_bdl_arctic-wav-arctic_a0009.npy")

    speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)

    speech = model.generate_speech(input_ids, speaker_embedding, vocoder=vocoder)

    speech = (speech.numpy() * 32767).astype(np.int16)
    return (16000, speech)


title = "SpeechT5: Speech Synthesis"

description = """
The <b>SpeechT5</b> model is pre-trained on text as well as speech inputs, with targets that are also a mix of text and speech.
By pre-training on text and speech at the same time, it learns unified representations for both, resulting in improved modeling capabilities.
"""

article = """
<div style='margin:20px auto;'>

<p>References: <a href="https://arxiv.org/abs/2110.07205">SpeechT5 paper</a> |
<a href="https://github.com/microsoft/SpeechT5/">original GitHub</a> |
<a href="https://huggingface.co/mechanicalsea/speecht5-tts">original weights</a></p>

<p>Speaker embeddings were generated from <a href="http://www.festvox.org/cmu_arctic/">CMU ARCTIC</a> using <a href="https://huggingface.co/mechanicalsea/speecht5-vc/blob/main/manifest/utils/prep_cmu_arctic_spkemb.py">this script</a>.</p>

</div>
"""

examples = [
    ["It is not in the stars to hold our destiny but in ourselves.", "BDL (male)"],
    ["The octopus and Oliver went to the opera in October.", "CLB (female)"],
    ["She sells seashells by the seashore. I saw a kitten eating chicken in the kitchen.", "RMS (male)"],
    ["How much wood would a woodchuck chuck if a woodchuck could chuck wood? He would chuck, he would, as much as he could, and chuck as much wood as a woodchuck would if a woodchuck could chuck wood.", "CLB (female)"],
]

gr.Interface(
    fn=predict,
    inputs=[
        gr.Text(label="keyword"),
        gr.Radio(label="Interest", choices=[
            "Minecraft",
            "Technology",
            "Politics",
            "KPop",
            "Surprise Me!"
        ],
        value="KPop"),
    ],
    outputs=[
        gr.Audio(label="Generated Speech", type="numpy"),
    ],
    title=title,
    description=description,
    article=article,
    examples=examples,
).launch()