Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -29,9 +29,6 @@ def predict(text, speaker):
|
|
29 |
if len(text.strip()) == 0:
|
30 |
return (16000, np.zeros(0).astype(np.int16))
|
31 |
|
32 |
-
# text = getNews ()
|
33 |
-
# inputs = processor(text=text, return_tensors="pt")
|
34 |
-
|
35 |
if Interest == "":
|
36 |
inputs = processor(text=getNews(Interest),
|
37 |
return_tensors="pt")
|
@@ -39,29 +36,11 @@ def predict(text, speaker):
|
|
39 |
inputs = processor(text=getNews(text),
|
40 |
return_tensors="pt")
|
41 |
|
42 |
-
|
43 |
# limit input length
|
44 |
input_ids = inputs["input_ids"]
|
45 |
input_ids = input_ids[..., :model.config.max_text_positions]
|
46 |
-
|
47 |
|
48 |
-
|
49 |
-
# load one of the provided speaker embeddings at random
|
50 |
-
idx = np.random.randint(len(speaker_embeddings))
|
51 |
-
key = list(speaker_embeddings.keys())[idx]
|
52 |
-
speaker_embedding = np.load(speaker_embeddings[key])
|
53 |
-
|
54 |
-
# randomly shuffle the elements
|
55 |
-
np.random.shuffle(speaker_embedding)
|
56 |
-
|
57 |
-
# randomly flip half the values
|
58 |
-
x = (np.random.rand(512) >= 0.5) * 1.0
|
59 |
-
x[x == 0] = -1.0
|
60 |
-
speaker_embedding *= x
|
61 |
-
|
62 |
-
#speaker_embedding = np.random.rand(512).astype(np.float32) * 0.3 - 0.15
|
63 |
-
else:
|
64 |
-
speaker_embedding = np.load(speaker_embeddings[speaker[:3]])
|
65 |
|
66 |
speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)
|
67 |
|
|
|
29 |
if len(text.strip()) == 0:
|
30 |
return (16000, np.zeros(0).astype(np.int16))
|
31 |
|
|
|
|
|
|
|
32 |
if Interest == "":
|
33 |
inputs = processor(text=getNews(Interest),
|
34 |
return_tensors="pt")
|
|
|
36 |
inputs = processor(text=getNews(text),
|
37 |
return_tensors="pt")
|
38 |
|
|
|
39 |
# limit input length
|
40 |
input_ids = inputs["input_ids"]
|
41 |
input_ids = input_ids[..., :model.config.max_text_positions]
|
|
|
42 |
|
43 |
+
speaker_embedding = np.load("spkemb/cmu_us_bdl_arctic-wav-arctic_a0009.npy")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0)
|
46 |
|