File size: 7,210 Bytes
1de9151
be40012
1de9151
e72f7ee
1de9151
 
e72f7ee
1de9151
 
e72f7ee
1de9151
 
c7f4ea7
 
1de9151
e72f7ee
1de9151
 
 
e72f7ee
1de9151
 
 
 
e72f7ee
 
 
fc4137d
 
1de9151
fc4137d
1de9151
 
fc4137d
1de9151
 
fc4137d
1de9151
 
fc4137d
fb19975
fc4137d
 
 
f706a7d
d552a50
 
be40012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d552a50
be40012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d552a50
be40012
 
d552a50
be40012
 
 
d552a50
be40012
 
d552a50
 
 
 
 
 
be40012
 
 
 
 
 
 
 
 
 
 
 
d552a50
 
be40012
 
d552a50
be40012
 
d552a50
 
be40012
 
 
d552a50
be40012
d552a50
be40012
 
d552a50
be40012
 
d552a50
be40012
 
d552a50
be40012
 
d552a50
be40012
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import google.generativeai as palm
import streamlit as st 
import os 

# Set your API key
palm.configure(api_key = os.environ['PALM_KEY'])

# Select the PaLM 2 model
model = 'models/text-bison-001'

# Generate text
if prompt := st.chat_input("Ask your query..."):
    enprom = f"""Act as bhagwan krishna and Answer the below provided query in context to first Bhagwad Geeta and then vedas, puranas and shastras if required. Use the verses and chapters sentences as references to your answer with suggestions
    coming from Bhagwad Geeta or vedas. Your answer to below query should be friendly and represent the characterstics of bhagwan krishna with fun and all knowing almight trait.\nQuery= {prompt}"""
    completion = palm.generate_text(model=model, prompt=enprom, temperature=0.5, max_output_tokens=800)

# response = palm.chat(messages=["Hello."])
# print(response.last) #  'Hello! What can I help you with?'
# response.reply("Can you tell me a joke?")

# Print the generated text
    with st.chat_message("Assistant"):
        st.write(prompt)
        st.write(completion.result)





# from transformers import AutoTokenizer, AutoModelForCausalLM

# tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
# model = AutoModelForCausalLM.from_pretrained("google/gemma-7b")

# input_text = "Write me a poem about Machine Learning."
# input_ids = tokenizer(input_text, return_tensors="pt")

# outputs = model.generate(**input_ids)
# st.write(tokenizer.decode(outputs[0]))








# import streamlit as st
# from dotenv import load_dotenv
# from PyPDF2 import PdfReader
# from langchain.text_splitter import CharacterTextSplitter
# from langchain.embeddings import HuggingFaceEmbeddings
# from langchain.vectorstores import FAISS
# # from langchain.chat_models import ChatOpenAI
# from langchain.memory import ConversationBufferMemory
# from langchain.chains import ConversationalRetrievalChain
# from htmlTemplates import css, bot_template, user_template
# from langchain.llms import HuggingFaceHub
# import os 
# # from transformers import T5Tokenizer, T5ForConditionalGeneration
# # from langchain.callbacks import get_openai_callback

# hub_token = os.environ["HUGGINGFACE_HUB_TOKEN"]

# def get_pdf_text(pdf_docs):
#     text = ""
#     for pdf in pdf_docs:
#         pdf_reader = PdfReader(pdf)
#         for page in pdf_reader.pages:
#             text += page.extract_text()
#     return text


# def get_text_chunks(text):
#     text_splitter = CharacterTextSplitter(
#         separator="\n",
#         chunk_size=200,
#         chunk_overlap=20,
#         length_function=len
#     )
#     chunks = text_splitter.split_text(text)
#     return chunks


# def get_vectorstore(text_chunks):
#     # embeddings = OpenAIEmbeddings()
#     # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
#     embeddings = HuggingFaceEmbeddings()
#     vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
#     return vectorstore


# def get_conversation_chain(vectorstore):
#     # llm = ChatOpenAI(model_name="gpt-3.5-turbo-16k")
#     # tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base")
#     # model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-base")

#     llm = HuggingFaceHub(repo_id="mistralai/Mistral-7B-v0.1", huggingfacehub_api_token=hub_token, model_kwargs={"temperature":0.5, "max_length":20})

#     memory = ConversationBufferMemory(
#         memory_key='chat_history', return_messages=True)
#     conversation_chain = ConversationalRetrievalChain.from_llm(
#         llm=llm,
#         retriever=vectorstore.as_retriever(),
#         memory=memory
#     )
#     return conversation_chain


# def handle_userinput(user_question):
#     response = st.session_state.conversation
#     reply = response.run(user_question)
#     st.write(reply)
#     # st.session_state.chat_history = response['chat_history']

#     # for i, message in enumerate(st.session_state.chat_history):
#     #     if i % 2 == 0:
#     #         st.write(user_template.replace(
#     #             "{{MSG}}", message.content), unsafe_allow_html=True)
#     #     else:
#     #         st.write(bot_template.replace(
#     #             "{{MSG}}", message.content), unsafe_allow_html=True)


# def main():
#     load_dotenv()
#     st.set_page_config(page_title="Chat with multiple PDFs",
#                        page_icon=":books:")
#     st.write(css, unsafe_allow_html=True)

#     if "conversation" not in st.session_state:
#         st.session_state.conversation = None
#     if "chat_history" not in st.session_state:
#         st.session_state.chat_history = None

#     st.header("Chat with multiple PDFs :books:")
#     user_question = st.text_input("Ask a question about your documents:")
#     if user_question:
#         handle_userinput(user_question)

#     with st.sidebar:
#         st.subheader("Your documents")
#         pdf_docs = st.file_uploader(
#             "Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
#         if st.button("Process"):
#             if(len(pdf_docs) == 0):
#                 st.error("Please upload at least one PDF")
#             else:
#                 with st.spinner("Processing"):
#                     # get pdf text
#                     raw_text = get_pdf_text(pdf_docs)

#                     # get the text chunks
#                     text_chunks = get_text_chunks(raw_text)

#                     # create vector store
#                     vectorstore = get_vectorstore(text_chunks)

#                     # create conversation chain
#                     st.session_state.conversation = get_conversation_chain(
#                         vectorstore)

# if __name__ == '__main__':
#     main()






# # import os
# # import getpass
# # import streamlit as st
# # from langchain.document_loaders import PyPDFLoader
# # from langchain.text_splitter import RecursiveCharacterTextSplitter
# # from langchain.embeddings import HuggingFaceEmbeddings
# # from langchain.vectorstores import Chroma
# # from langchain import HuggingFaceHub
# # from langchain.chains import RetrievalQA
# # # __import__('pysqlite3')
# # # import sys
# # # sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')


# # # load huggingface api key
# # hubtok = os.environ["HUGGINGFACE_HUB_TOKEN"]

# # # use streamlit file uploader to ask user for file
# # # file = st.file_uploader("Upload PDF")


# # path = "Geeta.pdf"
# # loader = PyPDFLoader(path)
# # pages = loader.load()

# # # st.write(pages)

# # splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=20)
# # docs = splitter.split_documents(pages)

# # embeddings = HuggingFaceEmbeddings()
# # doc_search = Chroma.from_documents(docs, embeddings)

# # repo_id = "tiiuae/falcon-7b"
# # llm = HuggingFaceHub(repo_id=repo_id, huggingfacehub_api_token=hubtok, model_kwargs={'temperature': 0.2,'max_length': 1000})

# # from langchain.schema import retriever
# # retireval_chain = RetrievalQA.from_chain_type(llm, chain_type="stuff", retriever=doc_search.as_retriever())

# # if query := st.chat_input("Enter a question: "):
# #   with st.chat_message("assistant"):
# #     st.write(retireval_chain.run(query))