Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,42 @@
|
|
1 |
-
import google.generativeai as palm
|
2 |
import streamlit as st
|
3 |
-
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
# Set your API key
|
6 |
-
palm.configure(api_key = os.environ['PALM_KEY'])
|
7 |
|
8 |
-
|
9 |
-
model = 'models/text-bison-001'
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
enprom = f"""Act as bhagwan krishna and Answer the below provided input in context to Bhagwad Geeta. Use the verses and chapters sentences as references to your answer with suggestions
|
14 |
-
coming from Bhagwad Geeta. Your answer to below input should only be in context to Bhagwad geeta.\nInput= {prompt}"""
|
15 |
-
completion = palm.generate_text(model=model, prompt=enprom, temperature=0.5, max_output_tokens=800)
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
# response.reply("Can you tell me a joke?")
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
st.write(prompt)
|
24 |
-
st.write(completion.result)
|
25 |
|
26 |
|
27 |
|
|
|
1 |
+
# import google.generativeai as palm
|
2 |
import streamlit as st
|
3 |
+
# import os
|
4 |
+
|
5 |
+
# # Set your API key
|
6 |
+
# palm.configure(api_key = os.environ['PALM_KEY'])
|
7 |
+
|
8 |
+
# # Select the PaLM 2 model
|
9 |
+
# model = 'models/text-bison-001'
|
10 |
+
|
11 |
+
# # Generate text
|
12 |
+
# if prompt := st.chat_input("Ask your query..."):
|
13 |
+
# enprom = f"""Act as bhagwan krishna and Answer the below provided input in context to Bhagwad Geeta. Use the verses and chapters sentences as references to your answer with suggestions
|
14 |
+
# coming from Bhagwad Geeta. Your answer to below input should only be in context to Bhagwad geeta.\nInput= {prompt}"""
|
15 |
+
# completion = palm.generate_text(model=model, prompt=enprom, temperature=0.5, max_output_tokens=800)
|
16 |
+
|
17 |
+
# # response = palm.chat(messages=["Hello."])
|
18 |
+
# # print(response.last) # 'Hello! What can I help you with?'
|
19 |
+
# # response.reply("Can you tell me a joke?")
|
20 |
+
|
21 |
+
# # Print the generated text
|
22 |
+
# with st.chat_message("Assistant"):
|
23 |
+
# st.write(prompt)
|
24 |
+
# st.write(completion.result)
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
|
|
|
|
|
29 |
|
30 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
31 |
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
|
33 |
+
model = AutoModelForCausalLM.from_pretrained("google/gemma-7b")
|
|
|
|
|
|
|
34 |
|
35 |
+
input_text = "Write me a poem about Machine Learning."
|
36 |
+
input_ids = tokenizer(input_text, return_tensors="pt")
|
|
|
37 |
|
38 |
+
outputs = model.generate(**input_ids)
|
39 |
+
st.write(tokenizer.decode(outputs[0]))
|
|
|
|
|
40 |
|
41 |
|
42 |
|