Spaces:
Sleeping
Sleeping
File size: 7,210 Bytes
1de9151 be40012 1de9151 e72f7ee 1de9151 e72f7ee 1de9151 e72f7ee 1de9151 c7f4ea7 1de9151 e72f7ee 1de9151 e72f7ee 1de9151 e72f7ee fc4137d 1de9151 fc4137d 1de9151 fc4137d 1de9151 fc4137d 1de9151 fc4137d fb19975 fc4137d f706a7d d552a50 be40012 d552a50 be40012 d552a50 be40012 d552a50 be40012 d552a50 be40012 d552a50 be40012 d552a50 be40012 d552a50 be40012 d552a50 be40012 d552a50 be40012 d552a50 be40012 d552a50 be40012 d552a50 be40012 d552a50 be40012 d552a50 be40012 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import google.generativeai as palm
import streamlit as st
import os
# Set your API key
palm.configure(api_key = os.environ['PALM_KEY'])
# Select the PaLM 2 model
model = 'models/text-bison-001'
# Generate text
if prompt := st.chat_input("Ask your query..."):
enprom = f"""Act as bhagwan krishna and Answer the below provided query in context to first Bhagwad Geeta and then vedas, puranas and shastras if required. Use the verses and chapters sentences as references to your answer with suggestions
coming from Bhagwad Geeta or vedas. Your answer to below query should be friendly and represent the characterstics of bhagwan krishna with fun and all knowing almight trait.\nQuery= {prompt}"""
completion = palm.generate_text(model=model, prompt=enprom, temperature=0.5, max_output_tokens=800)
# response = palm.chat(messages=["Hello."])
# print(response.last) # 'Hello! What can I help you with?'
# response.reply("Can you tell me a joke?")
# Print the generated text
with st.chat_message("Assistant"):
st.write(prompt)
st.write(completion.result)
# from transformers import AutoTokenizer, AutoModelForCausalLM
# tokenizer = AutoTokenizer.from_pretrained("google/gemma-7b")
# model = AutoModelForCausalLM.from_pretrained("google/gemma-7b")
# input_text = "Write me a poem about Machine Learning."
# input_ids = tokenizer(input_text, return_tensors="pt")
# outputs = model.generate(**input_ids)
# st.write(tokenizer.decode(outputs[0]))
# import streamlit as st
# from dotenv import load_dotenv
# from PyPDF2 import PdfReader
# from langchain.text_splitter import CharacterTextSplitter
# from langchain.embeddings import HuggingFaceEmbeddings
# from langchain.vectorstores import FAISS
# # from langchain.chat_models import ChatOpenAI
# from langchain.memory import ConversationBufferMemory
# from langchain.chains import ConversationalRetrievalChain
# from htmlTemplates import css, bot_template, user_template
# from langchain.llms import HuggingFaceHub
# import os
# # from transformers import T5Tokenizer, T5ForConditionalGeneration
# # from langchain.callbacks import get_openai_callback
# hub_token = os.environ["HUGGINGFACE_HUB_TOKEN"]
# def get_pdf_text(pdf_docs):
# text = ""
# for pdf in pdf_docs:
# pdf_reader = PdfReader(pdf)
# for page in pdf_reader.pages:
# text += page.extract_text()
# return text
# def get_text_chunks(text):
# text_splitter = CharacterTextSplitter(
# separator="\n",
# chunk_size=200,
# chunk_overlap=20,
# length_function=len
# )
# chunks = text_splitter.split_text(text)
# return chunks
# def get_vectorstore(text_chunks):
# # embeddings = OpenAIEmbeddings()
# # embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
# embeddings = HuggingFaceEmbeddings()
# vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
# return vectorstore
# def get_conversation_chain(vectorstore):
# # llm = ChatOpenAI(model_name="gpt-3.5-turbo-16k")
# # tokenizer = T5Tokenizer.from_pretrained("google/flan-t5-base")
# # model = T5ForConditionalGeneration.from_pretrained("google/flan-t5-base")
# llm = HuggingFaceHub(repo_id="mistralai/Mistral-7B-v0.1", huggingfacehub_api_token=hub_token, model_kwargs={"temperature":0.5, "max_length":20})
# memory = ConversationBufferMemory(
# memory_key='chat_history', return_messages=True)
# conversation_chain = ConversationalRetrievalChain.from_llm(
# llm=llm,
# retriever=vectorstore.as_retriever(),
# memory=memory
# )
# return conversation_chain
# def handle_userinput(user_question):
# response = st.session_state.conversation
# reply = response.run(user_question)
# st.write(reply)
# # st.session_state.chat_history = response['chat_history']
# # for i, message in enumerate(st.session_state.chat_history):
# # if i % 2 == 0:
# # st.write(user_template.replace(
# # "{{MSG}}", message.content), unsafe_allow_html=True)
# # else:
# # st.write(bot_template.replace(
# # "{{MSG}}", message.content), unsafe_allow_html=True)
# def main():
# load_dotenv()
# st.set_page_config(page_title="Chat with multiple PDFs",
# page_icon=":books:")
# st.write(css, unsafe_allow_html=True)
# if "conversation" not in st.session_state:
# st.session_state.conversation = None
# if "chat_history" not in st.session_state:
# st.session_state.chat_history = None
# st.header("Chat with multiple PDFs :books:")
# user_question = st.text_input("Ask a question about your documents:")
# if user_question:
# handle_userinput(user_question)
# with st.sidebar:
# st.subheader("Your documents")
# pdf_docs = st.file_uploader(
# "Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
# if st.button("Process"):
# if(len(pdf_docs) == 0):
# st.error("Please upload at least one PDF")
# else:
# with st.spinner("Processing"):
# # get pdf text
# raw_text = get_pdf_text(pdf_docs)
# # get the text chunks
# text_chunks = get_text_chunks(raw_text)
# # create vector store
# vectorstore = get_vectorstore(text_chunks)
# # create conversation chain
# st.session_state.conversation = get_conversation_chain(
# vectorstore)
# if __name__ == '__main__':
# main()
# # import os
# # import getpass
# # import streamlit as st
# # from langchain.document_loaders import PyPDFLoader
# # from langchain.text_splitter import RecursiveCharacterTextSplitter
# # from langchain.embeddings import HuggingFaceEmbeddings
# # from langchain.vectorstores import Chroma
# # from langchain import HuggingFaceHub
# # from langchain.chains import RetrievalQA
# # # __import__('pysqlite3')
# # # import sys
# # # sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
# # # load huggingface api key
# # hubtok = os.environ["HUGGINGFACE_HUB_TOKEN"]
# # # use streamlit file uploader to ask user for file
# # # file = st.file_uploader("Upload PDF")
# # path = "Geeta.pdf"
# # loader = PyPDFLoader(path)
# # pages = loader.load()
# # # st.write(pages)
# # splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=20)
# # docs = splitter.split_documents(pages)
# # embeddings = HuggingFaceEmbeddings()
# # doc_search = Chroma.from_documents(docs, embeddings)
# # repo_id = "tiiuae/falcon-7b"
# # llm = HuggingFaceHub(repo_id=repo_id, huggingfacehub_api_token=hubtok, model_kwargs={'temperature': 0.2,'max_length': 1000})
# # from langchain.schema import retriever
# # retireval_chain = RetrievalQA.from_chain_type(llm, chain_type="stuff", retriever=doc_search.as_retriever())
# # if query := st.chat_input("Enter a question: "):
# # with st.chat_message("assistant"):
# # st.write(retireval_chain.run(query)) |