XA7 commited on
Commit
4e57bf4
·
verified ·
1 Parent(s): 85562f4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +390 -390
app.py CHANGED
@@ -1,390 +1,390 @@
1
- # =============================================================================
2
- # Phishing Campaign Setup Assistant
3
- # =============================================================================
4
- # Description: A Gradio-based chatbot application using LangChain and OpenAI
5
- # to guide users through setting up a phishing simulation campaign step-by-step.
6
- #
7
- # Requirements:
8
- # - Python 3.x
9
- # - Libraries: langchain, langchain_openai, langchain_community, gradio,
10
- # python-dotenv, google-generativeai
11
- # - Environment Variables (.env file):
12
- # - OPENAI_API_KEY
13
- # - GOOGLE_API_KEY
14
- # - Data Files (in the same directory):
15
- # - company_info.json
16
- # - user_info.json
17
- # =============================================================================
18
-
19
- # --- 0. Required Imports ---
20
- # Standard library imports
21
- import os
22
- import datetime
23
- import json
24
- import re
25
- import base64
26
- import tempfile
27
-
28
- # Third-party imports for AI & LLMs
29
- from dotenv import load_dotenv
30
- from openai import OpenAI
31
- from google import genai as google_genai
32
- from google.genai import types as google_genai_types
33
- from langchain.agents import create_openai_tools_agent, AgentExecutor
34
- from langchain_openai import ChatOpenAI
35
- from langchain_core.tools import StructuredTool
36
- from langchain_core.messages import HumanMessage, AIMessage
37
- from langchain import hub
38
- from langchain_community.tools import DuckDuckGoSearchRun
39
-
40
- # Third-party import for Web UI
41
- import gradio as gr
42
-
43
- # --- 1. Configuration and Initialization ---
44
-
45
- # Load environment variables from a .env file
46
- load_dotenv()
47
-
48
- # Initialize the OpenAI client for the LangChain agent
49
- # We use a low temperature (0.0) for predictable, task-oriented behavior.
50
- llm = ChatOpenAI(model="gpt-4o", temperature=0.0)
51
- client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
52
-
53
- # Initialize the Google GenAI Client for the image generation tool
54
- # google_genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
55
- genai_client = google_genai.Client(api_key=os.getenv("GOOGLE_API_KEY"))
56
-
57
-
58
- # --- 2. Tool Definitions ---
59
- # These functions define the actions (tools) the AI agent can perform.
60
-
61
- def generate_image(prompt: str) -> dict:
62
- """
63
- Generates an image based on a text prompt, saves it to 'generated_phishing_image.png'
64
- in the current directory (overwriting previous images), and returns the absolute file path.
65
- """
66
- # Fixed filename ensures replacement on subsequent generations.
67
- output_filename = "generated_phishing_image.png"
68
-
69
- print(f"INFO: Generating image with prompt: '{prompt}'")
70
- try:
71
- output = genai_client.models.generate_images(
72
- prompt=prompt,
73
- model="imagen-4.0-generate-preview-06-06",
74
- config=google_genai_types.GenerateImagesConfig(
75
- number_of_images=1,
76
- aspect_ratio="16:9",
77
- ),
78
- )
79
- generated_img = output.generated_images[0].image
80
-
81
- # Save the image to the fixed path in the current directory.
82
- generated_img.save(output_filename)
83
-
84
- # Get the absolute path for reliable referencing in the HTML.
85
- absolute_image_path = os.path.abspath(output_filename)
86
-
87
- print(f"INFO: Image saved to: {absolute_image_path}")
88
- return {"status": "success", "image_path": absolute_image_path}
89
- except Exception as e:
90
- print(f"ERROR: Image generation failed: {e}")
91
- return {"status": "error", "message": f"Image generation failed: {e}"}
92
-
93
-
94
- def get_company_info() -> dict:
95
- """
96
- Retrieves company information (name, logoUrl, departments, etc.) from company_info.json.
97
- """
98
- print("INFO: Reading company_info.json")
99
- try:
100
- with open('company_info.json', 'r') as f:
101
- data = json.load(f)
102
- return {"status": "success", "data": data}
103
- except FileNotFoundError:
104
- return {"status": "error", "message": "company_info.json not found."}
105
- except json.JSONDecodeError:
106
- return {"status": "error", "message": "Error decoding company_info.json."}
107
-
108
-
109
- def get_user_info() -> dict:
110
- """
111
- Retrieves the current user's information (name, role, email) from user_info.json.
112
- """
113
- print("INFO: Reading user_info.json")
114
- try:
115
- with open('user_info.json', 'r') as f:
116
- data = json.load(f)
117
- return {"status": "success", "data": data}
118
- except FileNotFoundError:
119
- return {"status": "error", "message": "user_info.json not found."}
120
- except json.JSONDecodeError:
121
- return {"status": "error", "message": "Error decoding user_info.json."}
122
-
123
-
124
- def create_html_template(html_code: str) -> dict:
125
- """
126
- Takes a complete HTML string, cleans it (removes newlines), and prepares it for preview.
127
- """
128
- print("INFO: Formalizing agent-generated HTML template.")
129
- # Clean HTML by removing newlines for compact storage/transmission
130
- cleaned_html = html_code.replace("\n", "").replace("\r", "")
131
- return {"status": "success", "template": cleaned_html}
132
-
133
-
134
- def send_test_email(recipient: str, html_body: str) -> dict:
135
- """Simulates sending a test phishing email to a specified recipient."""
136
- print(f"INFO: Test email sent to {recipient}")
137
- return {"status": "success", "data": {"recipient": recipient}, "message": f"Test email sent to {recipient}."}
138
-
139
-
140
- def get_or_create_employee_list(action: str, employee_data: list = None) -> dict:
141
- """Simulates managing employee lists (create, add, use_existing)."""
142
- message = f"Action '{action}' on employee list was successful."
143
- return {"status": "success", "data": {"action": action}, "message": message}
144
-
145
-
146
- def select_target_group(group_type: str, values: list = None) -> dict:
147
- """
148
- Selects the target group (all, department, individual). Includes error checking
149
- to ensure 'values' are provided when necessary.
150
- """
151
- if group_type == "all":
152
- message = "The campaign will target all employees."
153
- elif group_type == "department" and values:
154
- message = f"Targeting departments: {', '.join(values)}."
155
- elif group_type == "individual" and values:
156
- message = f"Targeting individuals: {', '.join(values)}."
157
- else:
158
- # Handle cases where 'values' are missing or the group_type is unknown.
159
- message = f"Error: Invalid selection for group type '{group_type}' or missing values."
160
- return {"status": "success", "data": {"group_type": group_type, "targets": values}, "message": message}
161
-
162
-
163
- def schedule_attack(date_time: str) -> dict:
164
- """Simulates scheduling the phishing campaign."""
165
- return {"status": "success", "data": {"scheduled_for": date_time},
166
- "message": f"Campaign scheduled for {date_time}."}
167
-
168
-
169
- # --- 3. Agent and Prompt Configuration ---
170
-
171
- # Assemble all functions into a list of StructuredTools for the agent
172
- tools = [
173
- StructuredTool.from_function(func=generate_image, name="GenerateImage",
174
- description="Generates an image from a prompt and returns its local file path."),
175
- StructuredTool.from_function(func=get_company_info, name="GetCompanyInfo",
176
- description="Retrieves company information (including logoUrl and departments)."),
177
- StructuredTool.from_function(func=get_user_info, name="GetUserInfo",
178
- description="Retrieves the current user's information (including email)."),
179
- StructuredTool.from_function(func=create_html_template, name="CreateHtmlTemplate",
180
- description="Finalizes the phishing email's HTML code."),
181
- StructuredTool.from_function(func=send_test_email, name="SendTestEmail",
182
- description="Sends a test phishing email for review."),
183
- StructuredTool.from_function(func=get_or_create_employee_list, name="ManageEmployeeList",
184
- description="Manages the employee list for the campaign."),
185
- StructuredTool.from_function(func=select_target_group, name="SelectTargetGroup",
186
- description="Selects the target group for the campaign."),
187
- StructuredTool.from_function(func=schedule_attack, name="ScheduleAttack",
188
- description="Schedules the phishing campaign.")
189
- ]
190
-
191
- # Pull a standard agent prompt template from the LangChain hub
192
- prompt = hub.pull("hwchase17/openai-tools-agent")
193
-
194
- # Define the master instructions for the AI agent (the "System Prompt")
195
- SYSTEM_PROMPT = """
196
- You are an AI assistant named Cbulwork, designed to set up phishing simulation campaigns. Your goal is to guide the user step-by-step with precision and clarity. The user has already been greeted, so you should start directly with the process.
197
-
198
- **PROCESS:**
199
-
200
- **Step 1: Gather Context & Suggest Scenario**
201
- - Call `GetUserInfo` and `GetCompanyInfo`.
202
- - Greet the user by name.
203
- - If the user has NOT provided a topic, suggest 5 relevant scenarios based on company info.
204
- - Await the user's confirmation of the scenario.
205
-
206
- **Step 2: Choose Template Type**
207
- - Ask the user to choose a template type: Text Only, Text + Photo, or Photo Only.
208
- - Wait for their selection.
209
-
210
- **Step 3: Template Design**
211
- - Write a **highly detailed and convincing**, valid HTML code for the email based on the user's choice.
212
- - **IMAGE & LOGO RULES (CRITICAL):**
213
- - If 'Text + Photo' or 'Photo Only' was chosen:
214
- 1. Call `GenerateImage`. The prompt MUST be for a **flyer-style image with simple, bold text** related to the scenario (e.g., "A modern corporate flyer with the text 'Urgent Action Required: Update Your Password'").
215
- 2. Use the exact `image_path` returned by the tool in the `src` attribute of an `<img>` tag. **You MUST prefix the local path with `file:///` for the preview to work.**
216
- - If "Text + Photo" was chosen, also include the `logoUrl` from `GetCompanyInfo` in a separate `<img>` tag.
217
- - **CONTENT RULES:**
218
- - The email body must have at least two convincing paragraphs.
219
- - Generate a professional footer with fake details (address, contact info) for realism.
220
- - Generate a compelling subject, personalized greeting ("{{recipient.name}}"), detailed body, footer, and a clear call-to-action.
221
- - Do NOT include copyright lines.
222
- - After writing the code, you MUST call `CreateHtmlTemplate` with the HTML as a single string.
223
-
224
- **Step 4: Send Test Email**
225
- - After approval, ask to send a test email. If yes, use `SendTestEmail` with the user's email.
226
-
227
- **Step 5: Employee List**
228
- - Ask for the list provision method (upload/manual). If manual, provide an example format (`Name,Email`). Call `ManageEmployeeList`.
229
-
230
- **Step 6: Target Group Selection**
231
- - Ask to target 'all', 'department', or 'individual'.
232
- - If not 'all', ask for the specific names/departments (list available departments from `GetCompanyInfo`).
233
- - Call `SelectTargetGroup` with the correct `group_type` and `values`.
234
-
235
- **Step 7: Schedule Campaign**
236
- - Ask for a future launch date/time (`dd/mm/yyyy` format). Call `ScheduleAttack`.
237
-
238
- **Step 8: Final Summary & Confirmation**
239
- - Provide a complete summary. Ask for final confirmation. After confirmation, ask if there is anything else.
240
- """
241
-
242
- # Insert the system prompt into the template
243
- prompt.messages[0].prompt.template = SYSTEM_PROMPT
244
-
245
- # Create the agent (LLM + Tools + Prompt)
246
- agent = create_openai_tools_agent(llm, tools, prompt)
247
-
248
- # Create the agent executor (the runtime for the agent)
249
- agent_executor = AgentExecutor(
250
- agent=agent,
251
- tools=tools,
252
- verbose=True, # Set to True to see the agent's thought process and tool usage in the console
253
- handle_parsing_errors=True,
254
- max_iterations=15,
255
- return_intermediate_steps=True # Required to capture tool output for the UI
256
- )
257
-
258
-
259
- # --- 4. Core Application Logic ---
260
-
261
- def run_agent_turn(user_input: str, chat_history: list) -> dict:
262
- """
263
- Processes one turn of the conversation: sends input to the agent, executes tools,
264
- and collects the results (response, HTML, image path, and tool calls).
265
- """
266
- # Convert Gradio chat history format to LangChain message format
267
- langchain_messages = [
268
- HumanMessage(content=msg["content"]) if msg["role"] == "user" else AIMessage(content=msg["content"])
269
- for msg in chat_history
270
- ]
271
-
272
- # Invoke the agent
273
- response = agent_executor.invoke({
274
- "input": user_input,
275
- "chat_history": langchain_messages
276
- })
277
-
278
- agent_output = response.get("output", "Sorry, an error occurred.")
279
-
280
- # Initialize variables to capture outputs from the agent's steps
281
- html_to_preview = ""
282
- generated_image_path = None
283
- function_calls = []
284
- intermediate_steps = response.get("intermediate_steps", [])
285
-
286
- # Process the steps the agent took
287
- for action, tool_output in intermediate_steps:
288
- # Log the tool call for the JSON output box
289
- function_calls.append({
290
- "tool_name": action.tool,
291
- "tool_args": action.tool_input,
292
- "tool_output": tool_output,
293
- })
294
- # Capture the HTML output if the CreateHtmlTemplate tool was used
295
- if action.tool == "CreateHtmlTemplate" and isinstance(tool_output, dict):
296
- html_to_preview = tool_output.get("template", "")
297
- # Capture the image path if the GenerateImage tool was used successfully
298
- if action.tool == "GenerateImage" and tool_output.get("status") == "success":
299
- generated_image_path = tool_output.get("image_path")
300
-
301
- # Update the chat history
302
- updated_chat_history = chat_history + [
303
- {"role": "user", "content": user_input},
304
- {"role": "assistant", "content": agent_output}
305
- ]
306
-
307
- # Return a structured dictionary with all results
308
- return {
309
- "agent_response": agent_output,
310
- "html_preview": html_to_preview,
311
- "function_calls": function_calls,
312
- "updated_chat_history": updated_chat_history,
313
- "generated_image_preview": generated_image_path
314
- }
315
-
316
-
317
- def process_input_for_gradio(user_input: str, chat_history: list) -> tuple:
318
- """
319
- Event handler for the Gradio UI. Calls the core agent logic and returns
320
- the outputs in the order expected by the Gradio outputs list.
321
- """
322
- if not user_input.strip():
323
- # Don't process empty input
324
- return chat_history, "", None, None
325
-
326
- # Run the agent turn
327
- json_output = run_agent_turn(user_input, chat_history)
328
-
329
- # Optional: Print the backend output to the console for debugging
330
- print(f"--- Backend JSON Output ---\n{json.dumps(json_output, indent=2)}\n--------------------------")
331
-
332
- # Return the data in the order of the Gradio outputs=[...] list
333
- return (
334
- json_output["updated_chat_history"],
335
- json_output["html_preview"],
336
- json_output["function_calls"],
337
- json_output["generated_image_preview"]
338
- )
339
-
340
-
341
- # --- 5. Gradio User Interface Definition ---
342
-
343
- # Define the UI layout using Gradio Blocks
344
- with gr.Blocks(theme=gr.themes.Default(primary_hue="blue", secondary_hue="sky")) as demo:
345
- gr.Markdown("## Phishing Campaign Setup Assistant")
346
- gr.Markdown("I will guide you step-by-step to create and schedule a new phishing campaign.")
347
-
348
- with gr.Row():
349
- # Left Column: Chat Interface
350
- with gr.Column(scale=1):
351
- welcome_message = "Hello, I'm your AI phishing assistant. Send a message to get started."
352
- chatbot = gr.Chatbot(
353
- value=[{"role": "assistant", "content": welcome_message}],
354
- label="Conversation",
355
- height=600,
356
- type="messages" # Ensures we use the modern {'role': '...', 'content': '...'} format
357
- )
358
- user_input = gr.Textbox(
359
- placeholder="Send a message to continue...",
360
- label="Your Message",
361
- scale=12
362
- )
363
- # Right Column: Previews and Debugging
364
- with gr.Column(scale=1):
365
- gr.Markdown("### Email Template Preview")
366
- html_block = gr.HTML(label="HTML Preview")
367
-
368
- gr.Markdown("### Generated Image Preview")
369
- # Added an Image component to display the generated flyer/image
370
- image_preview_box = gr.Image(label="Image Preview", interactive=False)
371
-
372
- gr.Markdown("### Function Call Output (Debugging)")
373
- json_requests_box = gr.JSON(label="Function 'Requests' Output")
374
-
375
- # Connect the user input submission to the event handler
376
- user_input.submit(
377
- fn=process_input_for_gradio,
378
- inputs=[user_input, chatbot],
379
- # Ensure outputs match the return tuple of process_input_for_gradio
380
- outputs=[chatbot, html_block, json_requests_box, image_preview_box]
381
- )
382
- # Clear the input box after submission
383
- user_input.submit(lambda: "", None, user_input)
384
-
385
- # --- 6. Application Launch ---
386
-
387
- if __name__ == "__main__":
388
- # Launch the Gradio web server
389
- print("Launching Phishing Campaign Setup Assistant UI...")
390
- demo.launch(debug=True)
 
1
+ # =============================================================================
2
+ # Phishing Campaign Setup Assistant
3
+ # =============================================================================
4
+ # Description: A Gradio-based chatbot application using LangChain and OpenAI
5
+ # to guide users through setting up a phishing simulation campaign step-by-step.
6
+ #
7
+ # Requirements:
8
+ # - Python 3.x
9
+ # - Libraries: langchain, langchain_openai, langchain_community, gradio,
10
+ # python-dotenv, google-generativeai
11
+ # - Environment Variables (.env file):
12
+ # - OPENAI_API_KEY
13
+ # - GOOGLE_API_KEY
14
+ # - Data Files (in the same directory):
15
+ # - company_info.json
16
+ # - user_info.json
17
+ # =============================================================================
18
+
19
+ # --- 0. Required Imports ---
20
+ # Standard library imports
21
+ import os
22
+ import datetime
23
+ import json
24
+ import re
25
+ import base64
26
+ import tempfile
27
+
28
+ # Third-party imports for AI & LLMs
29
+ from dotenv import load_dotenv
30
+ from openai import OpenAI
31
+ from google import genai as google_genai
32
+ from google.genai import types as google_genai_types
33
+ from langchain.agents import create_openai_tools_agent, AgentExecutor
34
+ from langchain_openai import ChatOpenAI
35
+ from langchain_core.tools import StructuredTool
36
+ from langchain_core.messages import HumanMessage, AIMessage
37
+ from langchain import hub
38
+ from langchain_community.tools import DuckDuckGoSearchRun
39
+
40
+ # Third-party import for Web UI
41
+ import gradio as gr
42
+
43
+ # --- 1. Configuration and Initialization ---
44
+
45
+ # Load environment variables from a .env file
46
+ load_dotenv()
47
+
48
+ # Initialize the OpenAI client for the LangChain agent
49
+ # We use a low temperature (0.0) for predictable, task-oriented behavior.
50
+ llm = ChatOpenAI(model="gpt-4o", temperature=0.0)
51
+ client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
52
+
53
+ # Initialize the Google GenAI Client for the image generation tool
54
+ # google_genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
55
+ genai_client = google_genai.Client(api_key=os.getenv("GOOGLE_API_KEY"))
56
+
57
+
58
+ # --- 2. Tool Definitions ---
59
+ # These functions define the actions (tools) the AI agent can perform.
60
+
61
+ def generate_image(prompt: str) -> dict:
62
+ """
63
+ Generates an image based on a text prompt, saves it to 'generated_phishing_image.png'
64
+ in the current directory (overwriting previous images), and returns the absolute file path.
65
+ """
66
+ # Fixed filename ensures replacement on subsequent generations.
67
+ output_filename = "generated_phishing_image.png"
68
+
69
+ print(f"INFO: Generating image with prompt: '{prompt}'")
70
+ try:
71
+ output = genai_client.models.generate_images(
72
+ prompt=prompt,
73
+ model="imagen-4.0-generate-preview-06-06",
74
+ config=google_genai_types.GenerateImagesConfig(
75
+ number_of_images=1,
76
+ aspect_ratio="16:9",
77
+ ),
78
+ )
79
+ generated_img = output.generated_images[0].image
80
+
81
+ # Save the image to the fixed path in the current directory.
82
+ generated_img.save(output_filename)
83
+
84
+ # Get the absolute path for reliable referencing in the HTML.
85
+ absolute_image_path = os.path.abspath(output_filename)
86
+
87
+ print(f"INFO: Image saved to: {absolute_image_path}")
88
+ return {"status": "success", "image_path": absolute_image_path}
89
+ except Exception as e:
90
+ print(f"ERROR: Image generation failed: {e}")
91
+ return {"status": "error", "message": f"Image generation failed: {e}"}
92
+
93
+
94
+ def get_company_info() -> dict:
95
+ """
96
+ Retrieves company information (name, logoUrl, departments, etc.) from company_info.json.
97
+ """
98
+ print("INFO: Reading company_info.json")
99
+ try:
100
+ with open('company_info.json', 'r') as f:
101
+ data = json.load(f)
102
+ return {"status": "success", "data": data}
103
+ except FileNotFoundError:
104
+ return {"status": "error", "message": "company_info.json not found."}
105
+ except json.JSONDecodeError:
106
+ return {"status": "error", "message": "Error decoding company_info.json."}
107
+
108
+
109
+ def get_user_info() -> dict:
110
+ """
111
+ Retrieves the current user's information (name, role, email) from user_info.json.
112
+ """
113
+ print("INFO: Reading user_info.json")
114
+ try:
115
+ with open('user_info.json', 'r') as f:
116
+ data = json.load(f)
117
+ return {"status": "success", "data": data}
118
+ except FileNotFoundError:
119
+ return {"status": "error", "message": "user_info.json not found."}
120
+ except json.JSONDecodeError:
121
+ return {"status": "error", "message": "Error decoding user_info.json."}
122
+
123
+
124
+ def create_html_template(html_code: str) -> dict:
125
+ """
126
+ Takes a complete HTML string, cleans it (removes newlines), and prepares it for preview.
127
+ """
128
+ print("INFO: Formalizing agent-generated HTML template.")
129
+ # Clean HTML by removing newlines for compact storage/transmission
130
+ cleaned_html = html_code.replace("\n", "").replace("\r", "")
131
+ return {"status": "success", "template": cleaned_html}
132
+
133
+
134
+ def send_test_email(recipient: str, html_body: str) -> dict:
135
+ """Simulates sending a test phishing email to a specified recipient."""
136
+ print(f"INFO: Test email sent to {recipient}")
137
+ return {"status": "success", "data": {"recipient": recipient}, "message": f"Test email sent to {recipient}."}
138
+
139
+
140
+ def get_or_create_employee_list(action: str, employee_data: list = None) -> dict:
141
+ """Simulates managing employee lists (create, add, use_existing)."""
142
+ message = f"Action '{action}' on employee list was successful."
143
+ return {"status": "success", "data": {"action": action}, "message": message}
144
+
145
+
146
+ def select_target_group(group_type: str, values: list = None) -> dict:
147
+ """
148
+ Selects the target group (all, department, individual). Includes error checking
149
+ to ensure 'values' are provided when necessary.
150
+ """
151
+ if group_type == "all":
152
+ message = "The campaign will target all employees."
153
+ elif group_type == "department" and values:
154
+ message = f"Targeting departments: {', '.join(values)}."
155
+ elif group_type == "individual" and values:
156
+ message = f"Targeting individuals: {', '.join(values)}."
157
+ else:
158
+ # Handle cases where 'values' are missing or the group_type is unknown.
159
+ message = f"Error: Invalid selection for group type '{group_type}' or missing values."
160
+ return {"status": "success", "data": {"group_type": group_type, "targets": values}, "message": message}
161
+
162
+
163
+ def schedule_attack(date_time: str) -> dict:
164
+ """Simulates scheduling the phishing campaign."""
165
+ return {"status": "success", "data": {"scheduled_for": date_time},
166
+ "message": f"Campaign scheduled for {date_time}."}
167
+
168
+
169
+ # --- 3. Agent and Prompt Configuration ---
170
+
171
+ # Assemble all functions into a list of StructuredTools for the agent
172
+ tools = [
173
+ StructuredTool.from_function(func=generate_image, name="GenerateImage",
174
+ description="Generates an image from a prompt and returns its local file path."),
175
+ StructuredTool.from_function(func=get_company_info, name="GetCompanyInfo",
176
+ description="Retrieves company information (including logoUrl and departments)."),
177
+ StructuredTool.from_function(func=get_user_info, name="GetUserInfo",
178
+ description="Retrieves the current user's information (including email)."),
179
+ StructuredTool.from_function(func=create_html_template, name="CreateHtmlTemplate",
180
+ description="Finalizes the phishing email's HTML code."),
181
+ StructuredTool.from_function(func=send_test_email, name="SendTestEmail",
182
+ description="Sends a test phishing email for review."),
183
+ StructuredTool.from_function(func=get_or_create_employee_list, name="ManageEmployeeList",
184
+ description="Manages the employee list for the campaign."),
185
+ StructuredTool.from_function(func=select_target_group, name="SelectTargetGroup",
186
+ description="Selects the target group for the campaign."),
187
+ StructuredTool.from_function(func=schedule_attack, name="ScheduleAttack",
188
+ description="Schedules the phishing campaign.")
189
+ ]
190
+
191
+ # Pull a standard agent prompt template from the LangChain hub
192
+ prompt = hub.pull("hwchase17/openai-tools-agent")
193
+
194
+ # Define the master instructions for the AI agent (the "System Prompt")
195
+ SYSTEM_PROMPT = """
196
+ You are an AI assistant named Cbulwork, designed to set up phishing simulation campaigns. Your goal is to guide the user step-by-step with precision and clarity. The user has already been greeted, so you should start directly with the process.
197
+
198
+ **PROCESS:**
199
+
200
+ **Step 1: Gather Context & Suggest Scenario**
201
+ - Call `GetUserInfo` and `GetCompanyInfo`.
202
+ - Greet the user by name.
203
+ - If the user has NOT provided a topic, suggest 5 relevant scenarios based on company info.
204
+ - Await the user's confirmation of the scenario.
205
+
206
+ **Step 2: Choose Template Type**
207
+ - Ask the user to choose a template type: Text Only, Text + Photo, or Photo Only.
208
+ - Wait for their selection.
209
+
210
+ **Step 3: Template Design**
211
+ - Write a **highly detailed and convincing**, valid HTML code for the email based on the user's choice.
212
+ - **IMAGE & LOGO RULES (CRITICAL):**
213
+ - If 'Text + Photo' or 'Photo Only' was chosen:
214
+ 1. Call `GenerateImage`. The prompt MUST be for a **flyer-style image with simple, bold text** related to the scenario (e.g., "A modern corporate flyer with the text 'Urgent Action Required: Update Your Password'").
215
+ 2. Use the exact `image_path` returned by the tool in the `src` attribute of an `<img>` tag. **You MUST prefix the local path with `file:///` for the preview to work.**
216
+ - If "Text + Photo" was chosen, also include the `logoUrl` from `GetCompanyInfo` in a separate `<img>` tag.
217
+ - **CONTENT RULES:**
218
+ - The email body must have at least two convincing paragraphs.
219
+ - Generate a professional footer with fake details (address, contact info) for realism.
220
+ - Generate a compelling subject, personalized greeting ("{{recipient.name}}"), detailed body, footer, and a clear call-to-action.
221
+ - Do NOT include copyright lines.
222
+ - After writing the code, you MUST call `CreateHtmlTemplate` with the HTML as a single string.
223
+
224
+ **Step 4: Send Test Email**
225
+ - After approval, ask to send a test email. If yes, use `SendTestEmail` with the user's email.
226
+
227
+ **Step 5: Employee List**
228
+ - Ask for the list provision method (upload/manual). If manual, provide an example format (`Name,Email`). Call `ManageEmployeeList`.
229
+
230
+ **Step 6: Target Group Selection**
231
+ - Ask to target 'all', 'department', or 'individual'.
232
+ - If not 'all', ask for the specific names/departments (list available departments from `GetCompanyInfo`).
233
+ - Call `SelectTargetGroup` with the correct `group_type` and `values`.
234
+
235
+ **Step 7: Schedule Campaign**
236
+ - Ask for a future launch date/time (`dd/mm/yyyy` format). Call `ScheduleAttack`.
237
+
238
+ **Step 8: Final Summary & Confirmation**
239
+ - Provide a complete summary. Ask for final confirmation. After confirmation, ask if there is anything else.
240
+ """
241
+
242
+ # Insert the system prompt into the template
243
+ prompt.messages[0].prompt.template = SYSTEM_PROMPT
244
+
245
+ # Create the agent (LLM + Tools + Prompt)
246
+ agent = create_openai_tools_agent(llm, tools, prompt)
247
+
248
+ # Create the agent executor (the runtime for the agent)
249
+ agent_executor = AgentExecutor(
250
+ agent=agent,
251
+ tools=tools,
252
+ verbose=True, # Set to True to see the agent's thought process and tool usage in the console
253
+ handle_parsing_errors=True,
254
+ max_iterations=15,
255
+ return_intermediate_steps=True # Required to capture tool output for the UI
256
+ )
257
+
258
+
259
+ # --- 4. Core Application Logic ---
260
+
261
+ def run_agent_turn(user_input: str, chat_history: list) -> dict:
262
+ """
263
+ Processes one turn of the conversation: sends input to the agent, executes tools,
264
+ and collects the results (response, HTML, image path, and tool calls).
265
+ """
266
+ # Convert Gradio chat history format to LangChain message format
267
+ langchain_messages = [
268
+ HumanMessage(content=msg["content"]) if msg["role"] == "user" else AIMessage(content=msg["content"])
269
+ for msg in chat_history
270
+ ]
271
+
272
+ # Invoke the agent
273
+ response = agent_executor.invoke({
274
+ "input": user_input,
275
+ "chat_history": langchain_messages
276
+ })
277
+
278
+ agent_output = response.get("output", "Sorry, an error occurred.")
279
+
280
+ # Initialize variables to capture outputs from the agent's steps
281
+ html_to_preview = ""
282
+ generated_image_path = None
283
+ function_calls = []
284
+ intermediate_steps = response.get("intermediate_steps", [])
285
+
286
+ # Process the steps the agent took
287
+ for action, tool_output in intermediate_steps:
288
+ # Log the tool call for the JSON output box
289
+ function_calls.append({
290
+ "tool_name": action.tool,
291
+ "tool_args": action.tool_input,
292
+ "tool_output": tool_output,
293
+ })
294
+ # Capture the HTML output if the CreateHtmlTemplate tool was used
295
+ if action.tool == "CreateHtmlTemplate" and isinstance(tool_output, dict):
296
+ html_to_preview = tool_output.get("template", "")
297
+ # Capture the image path if the GenerateImage tool was used successfully
298
+ if action.tool == "GenerateImage" and tool_output.get("status") == "success":
299
+ generated_image_path = tool_output.get("image_path")
300
+
301
+ # Update the chat history
302
+ updated_chat_history = chat_history + [
303
+ {"role": "user", "content": user_input},
304
+ {"role": "assistant", "content": agent_output}
305
+ ]
306
+
307
+ # Return a structured dictionary with all results
308
+ return {
309
+ "agent_response": agent_output,
310
+ "html_preview": html_to_preview,
311
+ "function_calls": function_calls,
312
+ "updated_chat_history": updated_chat_history,
313
+ "generated_image_preview": generated_image_path
314
+ }
315
+
316
+
317
+ def process_input_for_gradio(user_input: str, chat_history: list) -> tuple:
318
+ """
319
+ Event handler for the Gradio UI. Calls the core agent logic and returns
320
+ the outputs in the order expected by the Gradio outputs list.
321
+ """
322
+ if not user_input.strip():
323
+ # Don't process empty input
324
+ return chat_history, "", None, None
325
+
326
+ # Run the agent turn
327
+ json_output = run_agent_turn(user_input, chat_history)
328
+
329
+ # Optional: Print the backend output to the console for debugging
330
+ print(f"--- Backend JSON Output ---\n{json.dumps(json_output, indent=2)}\n--------------------------")
331
+
332
+ # Return the data in the order of the Gradio outputs=[...] list
333
+ return (
334
+ json_output["updated_chat_history"],
335
+ json_output["html_preview"],
336
+ json_output["function_calls"],
337
+ json_output["generated_image_preview"]
338
+ )
339
+
340
+
341
+ # --- 5. Gradio User Interface Definition ---
342
+
343
+ # Define the UI layout using Gradio Blocks
344
+ with gr.Blocks(theme=gr.themes.Default(primary_hue="blue", secondary_hue="sky")) as demo:
345
+ gr.Markdown("## Phishing Campaign Setup Assistant")
346
+ gr.Markdown("I will guide you step-by-step to create and schedule a new phishing campaign.")
347
+
348
+ with gr.Row():
349
+ # Left Column: Chat Interface
350
+ with gr.Column(scale=1):
351
+ welcome_message = "Hello, I'm your AI phishing assistant. Send a message to get started."
352
+ chatbot = gr.Chatbot(
353
+ value=[{"role": "assistant", "content": welcome_message}],
354
+ label="Conversation",
355
+ height=600,
356
+ type="messages" # Ensures we use the modern {'role': '...', 'content': '...'} format
357
+ )
358
+ user_input = gr.Textbox(
359
+ placeholder="Send a message to continue...",
360
+ label="Your Message",
361
+ scale=12
362
+ )
363
+ # Right Column: Previews and Debugging
364
+ with gr.Column(scale=1):
365
+ gr.Markdown("### Email Template Preview")
366
+ html_block = gr.HTML(label="HTML Preview")
367
+
368
+ gr.Markdown("### Generated Image Preview")
369
+ # Added an Image component to display the generated flyer/image
370
+ image_preview_box = gr.Image(label="Image Preview", interactive=False)
371
+
372
+ gr.Markdown("### Function Call Output (Debugging)")
373
+ json_requests_box = gr.JSON(label="Function 'Requests' Output")
374
+
375
+ # Connect the user input submission to the event handler
376
+ user_input.submit(
377
+ fn=process_input_for_gradio,
378
+ inputs=[user_input, chatbot],
379
+ # Ensure outputs match the return tuple of process_input_for_gradio
380
+ outputs=[chatbot, html_block, json_requests_box, image_preview_box]
381
+ )
382
+ # Clear the input box after submission
383
+ user_input.submit(lambda: "", None, user_input)
384
+
385
+ # --- 6. Application Launch ---
386
+
387
+ if __name__ == "__main__":
388
+ # Launch the Gradio web server
389
+ print("Launching Phishing Campaign Setup Assistant UI...")
390
+ demo.launch(debug=False)