XA7 commited on
Commit
85562f4
·
verified ·
1 Parent(s): 67e47c6

Upload 5 files

Browse files
Files changed (5) hide show
  1. Csword_logo.png +0 -0
  2. app.py +390 -0
  3. company_info.json +274 -0
  4. requirements.txt +0 -0
  5. user_info.json +4 -0
Csword_logo.png ADDED
app.py ADDED
@@ -0,0 +1,390 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # =============================================================================
2
+ # Phishing Campaign Setup Assistant
3
+ # =============================================================================
4
+ # Description: A Gradio-based chatbot application using LangChain and OpenAI
5
+ # to guide users through setting up a phishing simulation campaign step-by-step.
6
+ #
7
+ # Requirements:
8
+ # - Python 3.x
9
+ # - Libraries: langchain, langchain_openai, langchain_community, gradio,
10
+ # python-dotenv, google-generativeai
11
+ # - Environment Variables (.env file):
12
+ # - OPENAI_API_KEY
13
+ # - GOOGLE_API_KEY
14
+ # - Data Files (in the same directory):
15
+ # - company_info.json
16
+ # - user_info.json
17
+ # =============================================================================
18
+
19
+ # --- 0. Required Imports ---
20
+ # Standard library imports
21
+ import os
22
+ import datetime
23
+ import json
24
+ import re
25
+ import base64
26
+ import tempfile
27
+
28
+ # Third-party imports for AI & LLMs
29
+ from dotenv import load_dotenv
30
+ from openai import OpenAI
31
+ from google import genai as google_genai
32
+ from google.genai import types as google_genai_types
33
+ from langchain.agents import create_openai_tools_agent, AgentExecutor
34
+ from langchain_openai import ChatOpenAI
35
+ from langchain_core.tools import StructuredTool
36
+ from langchain_core.messages import HumanMessage, AIMessage
37
+ from langchain import hub
38
+ from langchain_community.tools import DuckDuckGoSearchRun
39
+
40
+ # Third-party import for Web UI
41
+ import gradio as gr
42
+
43
+ # --- 1. Configuration and Initialization ---
44
+
45
+ # Load environment variables from a .env file
46
+ load_dotenv()
47
+
48
+ # Initialize the OpenAI client for the LangChain agent
49
+ # We use a low temperature (0.0) for predictable, task-oriented behavior.
50
+ llm = ChatOpenAI(model="gpt-4o", temperature=0.0)
51
+ client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
52
+
53
+ # Initialize the Google GenAI Client for the image generation tool
54
+ # google_genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
55
+ genai_client = google_genai.Client(api_key=os.getenv("GOOGLE_API_KEY"))
56
+
57
+
58
+ # --- 2. Tool Definitions ---
59
+ # These functions define the actions (tools) the AI agent can perform.
60
+
61
+ def generate_image(prompt: str) -> dict:
62
+ """
63
+ Generates an image based on a text prompt, saves it to 'generated_phishing_image.png'
64
+ in the current directory (overwriting previous images), and returns the absolute file path.
65
+ """
66
+ # Fixed filename ensures replacement on subsequent generations.
67
+ output_filename = "generated_phishing_image.png"
68
+
69
+ print(f"INFO: Generating image with prompt: '{prompt}'")
70
+ try:
71
+ output = genai_client.models.generate_images(
72
+ prompt=prompt,
73
+ model="imagen-4.0-generate-preview-06-06",
74
+ config=google_genai_types.GenerateImagesConfig(
75
+ number_of_images=1,
76
+ aspect_ratio="16:9",
77
+ ),
78
+ )
79
+ generated_img = output.generated_images[0].image
80
+
81
+ # Save the image to the fixed path in the current directory.
82
+ generated_img.save(output_filename)
83
+
84
+ # Get the absolute path for reliable referencing in the HTML.
85
+ absolute_image_path = os.path.abspath(output_filename)
86
+
87
+ print(f"INFO: Image saved to: {absolute_image_path}")
88
+ return {"status": "success", "image_path": absolute_image_path}
89
+ except Exception as e:
90
+ print(f"ERROR: Image generation failed: {e}")
91
+ return {"status": "error", "message": f"Image generation failed: {e}"}
92
+
93
+
94
+ def get_company_info() -> dict:
95
+ """
96
+ Retrieves company information (name, logoUrl, departments, etc.) from company_info.json.
97
+ """
98
+ print("INFO: Reading company_info.json")
99
+ try:
100
+ with open('company_info.json', 'r') as f:
101
+ data = json.load(f)
102
+ return {"status": "success", "data": data}
103
+ except FileNotFoundError:
104
+ return {"status": "error", "message": "company_info.json not found."}
105
+ except json.JSONDecodeError:
106
+ return {"status": "error", "message": "Error decoding company_info.json."}
107
+
108
+
109
+ def get_user_info() -> dict:
110
+ """
111
+ Retrieves the current user's information (name, role, email) from user_info.json.
112
+ """
113
+ print("INFO: Reading user_info.json")
114
+ try:
115
+ with open('user_info.json', 'r') as f:
116
+ data = json.load(f)
117
+ return {"status": "success", "data": data}
118
+ except FileNotFoundError:
119
+ return {"status": "error", "message": "user_info.json not found."}
120
+ except json.JSONDecodeError:
121
+ return {"status": "error", "message": "Error decoding user_info.json."}
122
+
123
+
124
+ def create_html_template(html_code: str) -> dict:
125
+ """
126
+ Takes a complete HTML string, cleans it (removes newlines), and prepares it for preview.
127
+ """
128
+ print("INFO: Formalizing agent-generated HTML template.")
129
+ # Clean HTML by removing newlines for compact storage/transmission
130
+ cleaned_html = html_code.replace("\n", "").replace("\r", "")
131
+ return {"status": "success", "template": cleaned_html}
132
+
133
+
134
+ def send_test_email(recipient: str, html_body: str) -> dict:
135
+ """Simulates sending a test phishing email to a specified recipient."""
136
+ print(f"INFO: Test email sent to {recipient}")
137
+ return {"status": "success", "data": {"recipient": recipient}, "message": f"Test email sent to {recipient}."}
138
+
139
+
140
+ def get_or_create_employee_list(action: str, employee_data: list = None) -> dict:
141
+ """Simulates managing employee lists (create, add, use_existing)."""
142
+ message = f"Action '{action}' on employee list was successful."
143
+ return {"status": "success", "data": {"action": action}, "message": message}
144
+
145
+
146
+ def select_target_group(group_type: str, values: list = None) -> dict:
147
+ """
148
+ Selects the target group (all, department, individual). Includes error checking
149
+ to ensure 'values' are provided when necessary.
150
+ """
151
+ if group_type == "all":
152
+ message = "The campaign will target all employees."
153
+ elif group_type == "department" and values:
154
+ message = f"Targeting departments: {', '.join(values)}."
155
+ elif group_type == "individual" and values:
156
+ message = f"Targeting individuals: {', '.join(values)}."
157
+ else:
158
+ # Handle cases where 'values' are missing or the group_type is unknown.
159
+ message = f"Error: Invalid selection for group type '{group_type}' or missing values."
160
+ return {"status": "success", "data": {"group_type": group_type, "targets": values}, "message": message}
161
+
162
+
163
+ def schedule_attack(date_time: str) -> dict:
164
+ """Simulates scheduling the phishing campaign."""
165
+ return {"status": "success", "data": {"scheduled_for": date_time},
166
+ "message": f"Campaign scheduled for {date_time}."}
167
+
168
+
169
+ # --- 3. Agent and Prompt Configuration ---
170
+
171
+ # Assemble all functions into a list of StructuredTools for the agent
172
+ tools = [
173
+ StructuredTool.from_function(func=generate_image, name="GenerateImage",
174
+ description="Generates an image from a prompt and returns its local file path."),
175
+ StructuredTool.from_function(func=get_company_info, name="GetCompanyInfo",
176
+ description="Retrieves company information (including logoUrl and departments)."),
177
+ StructuredTool.from_function(func=get_user_info, name="GetUserInfo",
178
+ description="Retrieves the current user's information (including email)."),
179
+ StructuredTool.from_function(func=create_html_template, name="CreateHtmlTemplate",
180
+ description="Finalizes the phishing email's HTML code."),
181
+ StructuredTool.from_function(func=send_test_email, name="SendTestEmail",
182
+ description="Sends a test phishing email for review."),
183
+ StructuredTool.from_function(func=get_or_create_employee_list, name="ManageEmployeeList",
184
+ description="Manages the employee list for the campaign."),
185
+ StructuredTool.from_function(func=select_target_group, name="SelectTargetGroup",
186
+ description="Selects the target group for the campaign."),
187
+ StructuredTool.from_function(func=schedule_attack, name="ScheduleAttack",
188
+ description="Schedules the phishing campaign.")
189
+ ]
190
+
191
+ # Pull a standard agent prompt template from the LangChain hub
192
+ prompt = hub.pull("hwchase17/openai-tools-agent")
193
+
194
+ # Define the master instructions for the AI agent (the "System Prompt")
195
+ SYSTEM_PROMPT = """
196
+ You are an AI assistant named Cbulwork, designed to set up phishing simulation campaigns. Your goal is to guide the user step-by-step with precision and clarity. The user has already been greeted, so you should start directly with the process.
197
+
198
+ **PROCESS:**
199
+
200
+ **Step 1: Gather Context & Suggest Scenario**
201
+ - Call `GetUserInfo` and `GetCompanyInfo`.
202
+ - Greet the user by name.
203
+ - If the user has NOT provided a topic, suggest 5 relevant scenarios based on company info.
204
+ - Await the user's confirmation of the scenario.
205
+
206
+ **Step 2: Choose Template Type**
207
+ - Ask the user to choose a template type: Text Only, Text + Photo, or Photo Only.
208
+ - Wait for their selection.
209
+
210
+ **Step 3: Template Design**
211
+ - Write a **highly detailed and convincing**, valid HTML code for the email based on the user's choice.
212
+ - **IMAGE & LOGO RULES (CRITICAL):**
213
+ - If 'Text + Photo' or 'Photo Only' was chosen:
214
+ 1. Call `GenerateImage`. The prompt MUST be for a **flyer-style image with simple, bold text** related to the scenario (e.g., "A modern corporate flyer with the text 'Urgent Action Required: Update Your Password'").
215
+ 2. Use the exact `image_path` returned by the tool in the `src` attribute of an `<img>` tag. **You MUST prefix the local path with `file:///` for the preview to work.**
216
+ - If "Text + Photo" was chosen, also include the `logoUrl` from `GetCompanyInfo` in a separate `<img>` tag.
217
+ - **CONTENT RULES:**
218
+ - The email body must have at least two convincing paragraphs.
219
+ - Generate a professional footer with fake details (address, contact info) for realism.
220
+ - Generate a compelling subject, personalized greeting ("{{recipient.name}}"), detailed body, footer, and a clear call-to-action.
221
+ - Do NOT include copyright lines.
222
+ - After writing the code, you MUST call `CreateHtmlTemplate` with the HTML as a single string.
223
+
224
+ **Step 4: Send Test Email**
225
+ - After approval, ask to send a test email. If yes, use `SendTestEmail` with the user's email.
226
+
227
+ **Step 5: Employee List**
228
+ - Ask for the list provision method (upload/manual). If manual, provide an example format (`Name,Email`). Call `ManageEmployeeList`.
229
+
230
+ **Step 6: Target Group Selection**
231
+ - Ask to target 'all', 'department', or 'individual'.
232
+ - If not 'all', ask for the specific names/departments (list available departments from `GetCompanyInfo`).
233
+ - Call `SelectTargetGroup` with the correct `group_type` and `values`.
234
+
235
+ **Step 7: Schedule Campaign**
236
+ - Ask for a future launch date/time (`dd/mm/yyyy` format). Call `ScheduleAttack`.
237
+
238
+ **Step 8: Final Summary & Confirmation**
239
+ - Provide a complete summary. Ask for final confirmation. After confirmation, ask if there is anything else.
240
+ """
241
+
242
+ # Insert the system prompt into the template
243
+ prompt.messages[0].prompt.template = SYSTEM_PROMPT
244
+
245
+ # Create the agent (LLM + Tools + Prompt)
246
+ agent = create_openai_tools_agent(llm, tools, prompt)
247
+
248
+ # Create the agent executor (the runtime for the agent)
249
+ agent_executor = AgentExecutor(
250
+ agent=agent,
251
+ tools=tools,
252
+ verbose=True, # Set to True to see the agent's thought process and tool usage in the console
253
+ handle_parsing_errors=True,
254
+ max_iterations=15,
255
+ return_intermediate_steps=True # Required to capture tool output for the UI
256
+ )
257
+
258
+
259
+ # --- 4. Core Application Logic ---
260
+
261
+ def run_agent_turn(user_input: str, chat_history: list) -> dict:
262
+ """
263
+ Processes one turn of the conversation: sends input to the agent, executes tools,
264
+ and collects the results (response, HTML, image path, and tool calls).
265
+ """
266
+ # Convert Gradio chat history format to LangChain message format
267
+ langchain_messages = [
268
+ HumanMessage(content=msg["content"]) if msg["role"] == "user" else AIMessage(content=msg["content"])
269
+ for msg in chat_history
270
+ ]
271
+
272
+ # Invoke the agent
273
+ response = agent_executor.invoke({
274
+ "input": user_input,
275
+ "chat_history": langchain_messages
276
+ })
277
+
278
+ agent_output = response.get("output", "Sorry, an error occurred.")
279
+
280
+ # Initialize variables to capture outputs from the agent's steps
281
+ html_to_preview = ""
282
+ generated_image_path = None
283
+ function_calls = []
284
+ intermediate_steps = response.get("intermediate_steps", [])
285
+
286
+ # Process the steps the agent took
287
+ for action, tool_output in intermediate_steps:
288
+ # Log the tool call for the JSON output box
289
+ function_calls.append({
290
+ "tool_name": action.tool,
291
+ "tool_args": action.tool_input,
292
+ "tool_output": tool_output,
293
+ })
294
+ # Capture the HTML output if the CreateHtmlTemplate tool was used
295
+ if action.tool == "CreateHtmlTemplate" and isinstance(tool_output, dict):
296
+ html_to_preview = tool_output.get("template", "")
297
+ # Capture the image path if the GenerateImage tool was used successfully
298
+ if action.tool == "GenerateImage" and tool_output.get("status") == "success":
299
+ generated_image_path = tool_output.get("image_path")
300
+
301
+ # Update the chat history
302
+ updated_chat_history = chat_history + [
303
+ {"role": "user", "content": user_input},
304
+ {"role": "assistant", "content": agent_output}
305
+ ]
306
+
307
+ # Return a structured dictionary with all results
308
+ return {
309
+ "agent_response": agent_output,
310
+ "html_preview": html_to_preview,
311
+ "function_calls": function_calls,
312
+ "updated_chat_history": updated_chat_history,
313
+ "generated_image_preview": generated_image_path
314
+ }
315
+
316
+
317
+ def process_input_for_gradio(user_input: str, chat_history: list) -> tuple:
318
+ """
319
+ Event handler for the Gradio UI. Calls the core agent logic and returns
320
+ the outputs in the order expected by the Gradio outputs list.
321
+ """
322
+ if not user_input.strip():
323
+ # Don't process empty input
324
+ return chat_history, "", None, None
325
+
326
+ # Run the agent turn
327
+ json_output = run_agent_turn(user_input, chat_history)
328
+
329
+ # Optional: Print the backend output to the console for debugging
330
+ print(f"--- Backend JSON Output ---\n{json.dumps(json_output, indent=2)}\n--------------------------")
331
+
332
+ # Return the data in the order of the Gradio outputs=[...] list
333
+ return (
334
+ json_output["updated_chat_history"],
335
+ json_output["html_preview"],
336
+ json_output["function_calls"],
337
+ json_output["generated_image_preview"]
338
+ )
339
+
340
+
341
+ # --- 5. Gradio User Interface Definition ---
342
+
343
+ # Define the UI layout using Gradio Blocks
344
+ with gr.Blocks(theme=gr.themes.Default(primary_hue="blue", secondary_hue="sky")) as demo:
345
+ gr.Markdown("## Phishing Campaign Setup Assistant")
346
+ gr.Markdown("I will guide you step-by-step to create and schedule a new phishing campaign.")
347
+
348
+ with gr.Row():
349
+ # Left Column: Chat Interface
350
+ with gr.Column(scale=1):
351
+ welcome_message = "Hello, I'm your AI phishing assistant. Send a message to get started."
352
+ chatbot = gr.Chatbot(
353
+ value=[{"role": "assistant", "content": welcome_message}],
354
+ label="Conversation",
355
+ height=600,
356
+ type="messages" # Ensures we use the modern {'role': '...', 'content': '...'} format
357
+ )
358
+ user_input = gr.Textbox(
359
+ placeholder="Send a message to continue...",
360
+ label="Your Message",
361
+ scale=12
362
+ )
363
+ # Right Column: Previews and Debugging
364
+ with gr.Column(scale=1):
365
+ gr.Markdown("### Email Template Preview")
366
+ html_block = gr.HTML(label="HTML Preview")
367
+
368
+ gr.Markdown("### Generated Image Preview")
369
+ # Added an Image component to display the generated flyer/image
370
+ image_preview_box = gr.Image(label="Image Preview", interactive=False)
371
+
372
+ gr.Markdown("### Function Call Output (Debugging)")
373
+ json_requests_box = gr.JSON(label="Function 'Requests' Output")
374
+
375
+ # Connect the user input submission to the event handler
376
+ user_input.submit(
377
+ fn=process_input_for_gradio,
378
+ inputs=[user_input, chatbot],
379
+ # Ensure outputs match the return tuple of process_input_for_gradio
380
+ outputs=[chatbot, html_block, json_requests_box, image_preview_box]
381
+ )
382
+ # Clear the input box after submission
383
+ user_input.submit(lambda: "", None, user_input)
384
+
385
+ # --- 6. Application Launch ---
386
+
387
+ if __name__ == "__main__":
388
+ # Launch the Gradio web server
389
+ print("Launching Phishing Campaign Setup Assistant UI...")
390
+ demo.launch(debug=True)
company_info.json ADDED
@@ -0,0 +1,274 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "companyName": "Csword",
3
+ "companyDescription": "Csword is a leading provider of cybersecurity solutions, specializing in threat intelligence, network security, and vulnerability management. We offer a comprehensive suite of products and services designed to protect organizations of all sizes from the ever-evolving landscape of cyber threats. Our mission is to empower our clients with the tools and expertise they need to defend their digital assets and maintain operational resilience.",
4
+ "employeeCount": 382,
5
+ "logo" : "Csword_logo.png",
6
+ "colorPalette": {
7
+ "primary": "#0A192F",
8
+ "secondary": "#64FFDA",
9
+ "accent": "#CCD6F6",
10
+ "background": "#0A192F",
11
+ "text": "#8892B0"
12
+ },
13
+ "departments": [
14
+ "Cybersecurity Operations",
15
+ "Threat Intelligence",
16
+ "Research and Development",
17
+ "Sales and Marketing",
18
+ "Human Resources",
19
+ "Finance",
20
+ "Customer Support"
21
+ ],
22
+ "employees": [
23
+ {
24
+ "name": "Liam Smith",
25
+ "email": "[email protected]",
26
+ "department": "Cybersecurity Operations"
27
+ },
28
+ {
29
+ "name": "Olivia Johnson",
30
+ "email": "[email protected]",
31
+ "department": "Threat Intelligence"
32
+ },
33
+ {
34
+ "name": "Noah Williams",
35
+ "email": "[email protected]",
36
+ "department": "Research and Development"
37
+ },
38
+ {
39
+ "name": "Emma Brown",
40
+ "email": "[email protected]",
41
+ "department": "Sales and Marketing"
42
+ },
43
+ {
44
+ "name": "Oliver Jones",
45
+ "email": "[email protected]",
46
+ "department": "Human Resources"
47
+ },
48
+ {
49
+ "name": "Ava Garcia",
50
+ "email": "[email protected]",
51
+ "department": "Finance"
52
+ },
53
+ {
54
+ "name": "Elijah Miller",
55
+ "email": "[email protected]",
56
+ "department": "Customer Support"
57
+ },
58
+ {
59
+ "name": "Charlotte Davis",
60
+ "email": "[email protected]",
61
+ "department": "Cybersecurity Operations"
62
+ },
63
+ {
64
+ "name": "William Rodriguez",
65
+ "email": "[email protected]",
66
+ "department": "Threat Intelligence"
67
+ },
68
+ {
69
+ "name": "Sophia Martinez",
70
+ "email": "[email protected]",
71
+ "department": "Research and Development"
72
+ },
73
+ {
74
+ "name": "James Hernandez",
75
+ "email": "[email protected]",
76
+ "department": "Sales and Marketing"
77
+ },
78
+ {
79
+ "name": "Amelia Lopez",
80
+ "email": "[email protected]",
81
+ "department": "Human Resources"
82
+ },
83
+ {
84
+ "name": "Benjamin Gonzalez",
85
+ "email": "[email protected]",
86
+ "department": "Finance"
87
+ },
88
+ {
89
+ "name": "Isabella Wilson",
90
+ "email": "[email protected]",
91
+ "department": "Customer Support"
92
+ },
93
+ {
94
+ "name": "Lucas Anderson",
95
+ "email": "[email protected]",
96
+ "department": "Cybersecurity Operations"
97
+ },
98
+ {
99
+ "name": "Mia Thomas",
100
+ "email": "[email protected]",
101
+ "department": "Threat Intelligence"
102
+ },
103
+ {
104
+ "name": "Henry Taylor",
105
+ "email": "[email protected]",
106
+ "department": "Research and Development"
107
+ },
108
+ {
109
+ "name": "Evelyn Moore",
110
+ "email": "[email protected]",
111
+ "department": "Sales and Marketing"
112
+ },
113
+ {
114
+ "name": "Alexander Jackson",
115
+ "email": "[email protected]",
116
+ "department": "Human Resources"
117
+ },
118
+ {
119
+ "name": "Harper Martin",
120
+ "email": "[email protected]",
121
+ "department": "Finance"
122
+ },
123
+ {
124
+ "name": "Sebastian Lee",
125
+ "email": "[email protected]",
126
+ "department": "Customer Support"
127
+ },
128
+ {
129
+ "name": "Abigail Perez",
130
+ "email": "[email protected]",
131
+ "department": "Cybersecurity Operations"
132
+ },
133
+ {
134
+ "name": "Ethan Thompson",
135
+ "email": "[email protected]",
136
+ "department": "Threat Intelligence"
137
+ },
138
+ {
139
+ "name": "Emily White",
140
+ "email": "[email protected]",
141
+ "department": "Research and Development"
142
+ },
143
+ {
144
+ "name": "Michael Harris",
145
+ "email": "[email protected]",
146
+ "department": "Sales and Marketing"
147
+ },
148
+ {
149
+ "name": "Madison Sanchez",
150
+ "email": "[email protected]",
151
+ "department": "Human Resources"
152
+ },
153
+ {
154
+ "name": "Daniel Clark",
155
+ "email": "[email protected]",
156
+ "department": "Finance"
157
+ },
158
+ {
159
+ "name": "Avery Ramirez",
160
+ "email": "[email protected]",
161
+ "department": "Customer Support"
162
+ },
163
+ {
164
+ "name": "Sofia Lewis",
165
+ "email": "[email protected]",
166
+ "department": "Cybersecurity Operations"
167
+ },
168
+ {
169
+ "name": "Logan Robinson",
170
+ "email": "[email protected]",
171
+ "department": "Threat Intelligence"
172
+ },
173
+ {
174
+ "name": "Aria Walker",
175
+ "email": "[email protected]",
176
+ "department": "Research and Development"
177
+ },
178
+ {
179
+ "name": "Jackson Young",
180
+ "email": "[email protected]",
181
+ "department": "Sales and Marketing"
182
+ },
183
+ {
184
+ "name": "Scarlett Allen",
185
+ "email": "[email protected]",
186
+ "department": "Human Resources"
187
+ },
188
+ {
189
+ "name": "Mateo King",
190
+ "email": "[email protected]",
191
+ "department": "Finance"
192
+ },
193
+ {
194
+ "name": "Luna Wright",
195
+ "email": "[email protected]",
196
+ "department": "Customer Support"
197
+ },
198
+ {
199
+ "name": "Leo Scott",
200
+ "email": "[email protected]",
201
+ "department": "Cybersecurity Operations"
202
+ },
203
+ {
204
+ "name": "Chloe Green",
205
+ "email": "[email protected]",
206
+ "department": "Threat Intelligence"
207
+ },
208
+ {
209
+ "name": "Jack Adams",
210
+ "email": "[email protected]",
211
+ "department": "Research and Development"
212
+ },
213
+ {
214
+ "name": "Grace Baker",
215
+ "email": "[email protected]",
216
+ "department": "Sales and Marketing"
217
+ },
218
+ {
219
+ "name": "Owen Nelson",
220
+ "email": "[email protected]",
221
+ "department": "Human Resources"
222
+ },
223
+ {
224
+ "name": "Penelope Carter",
225
+ "email": "[email protected]",
226
+ "department": "Finance"
227
+ },
228
+ {
229
+ "name": "Theodore Mitchell",
230
+ "email": "[email protected]",
231
+ "department": "Customer Support"
232
+ },
233
+ {
234
+ "name": "Layla Perez",
235
+ "email": "[email protected]",
236
+ "department": "Cybersecurity Operations"
237
+ },
238
+ {
239
+ "name": "Wyatt Roberts",
240
+ "email": "[email protected]",
241
+ "department": "Threat Intelligence"
242
+ },
243
+ {
244
+ "name": "Riley Turner",
245
+ "email": "[email protected]",
246
+ "department": "Research and Development"
247
+ },
248
+ {
249
+ "name": "Nora Phillips",
250
+ "email": "[email protected]",
251
+ "department": "Sales and Marketing"
252
+ },
253
+ {
254
+ "name": "Caleb Campbell",
255
+ "email": "[email protected]",
256
+ "department": "Human Resources"
257
+ },
258
+ {
259
+ "name": "Zoey Parker",
260
+ "email": "[email protected]",
261
+ "department": "Finance"
262
+ },
263
+ {
264
+ "name": "Levi Evans",
265
+ "email": "[email protected]",
266
+ "department": "Customer Support"
267
+ },
268
+ {
269
+ "name": "Mila Edwards",
270
+ "email": "[email protected]",
271
+ "department": "Cybersecurity Operations"
272
+ }
273
+ ]
274
+ }
requirements.txt ADDED
Binary file (258 Bytes). View file
 
user_info.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "name": "Amr Ahmed",
3
+ "email": "[email protected]"
4
+ }