File size: 2,543 Bytes
35d085e
 
 
 
 
 
 
 
 
 
8f58690
35d085e
 
 
 
 
 
 
 
f441fbb
 
35d085e
f441fbb
 
 
35d085e
 
 
 
f441fbb
 
 
 
 
 
 
 
 
 
 
 
35d085e
 
c95fdfc
 
f441fbb
 
 
 
 
 
 
35d085e
 
f441fbb
 
 
 
 
 
 
35d085e
 
 
 
f441fbb
 
 
 
 
 
 
 
 
 
 
35d085e
 
 
 
f441fbb
 
35d085e
 
 
f441fbb
 
 
 
 
 
 
9ac7986
f441fbb
 
 
 
 
35d085e
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import torch
import os
import requests
# from langchain.llms.huggingface_pipeline import HuggingFacePipeline

key = os.environ.get("huggingface_key")
openai_api_key = os.environ.get("openai_key")
app = FastAPI(openapi_url="/api/v1/LLM/openapi.json", docs_url="/api/v1/LLM/docs")

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_methods=["*"],
    allow_headers=["*"],
    allow_credentials=True,
)
# API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-v0.1"
# headers = {"Authorization": f"Bearer {key}"}

# def query(payload):
# 	response = requests.post(API_URL, headers=headers, json=payload)
# 	return response.json()




def LLM(llm_name, length):
    tokenizer = AutoTokenizer.from_pretrained(llm_name)
    model = AutoModelForCausalLM.from_pretrained(llm_name)
    pipe = pipeline("text-generation",
                    model=model,
                    tokenizer=tokenizer,
                    max_length=length,
                    do_sample=True,
                    top_p=0.95,
                    repetition_penalty=1.2,
                   )
    return pipe


# tokenizer = AutoTokenizer.from_pretrained("WizardLM/WizardCoder-1B-V1.0")
# base_model = AutoModelForCausalLM.from_pretrained("WizardLM/WizardCoder-1B-V1.0")
# Mistral 7B
mistral_llm = LLM("mistralai/Mistral-7B-v0.1",30000)


# WizardCoder 13B
wizard_llm = LLM("WizardLM/WizardCoder-Python-13B-V1.0",8000)

# hf_llm = HuggingFacePipeline(pipeline=pipe)

def ask_model(model, prompt):
    if(model == 'mistral'):
        return mistral_llm(prompt)
    if(model == 'wizard'):
        return wizard_llm(prompt)



@app.get("/")
def root():
    return {"message": "R&D LLM API"}
    
# @app.get("/get")
# def get():
#     result = pipe("name 5 programming languages",do_sample=False)
#     print(result)
#     return {"message": result}








@app.post("/ask_llm")
async def ask_llm_endpoint(model:str, prompt: str):
    result = ask_model(model,prompt)
    return {"result": result}









# APIs

# @app.post("/ask_HFAPI")
# def ask_HFAPI_endpoint(prompt: str):
#     result = query(prompt)
#     return {"result": result}
    
from langchain.llms import OpenAI

llm = OpenAI(model_name="text-davinci-003", temperature=0.5, openai_api_key=openai_api_key)

@app.post("/ask_GPT")
def ask_GPT_endpoint(prompt: str):
    result = llm(prompt)
    return {"result": result}