Spaces:
Paused
Paused
Update endpoints.py
Browse files- endpoints.py +57 -32
endpoints.py
CHANGED
@@ -17,60 +17,85 @@ app.add_middleware(
|
|
17 |
allow_headers=["*"],
|
18 |
allow_credentials=True,
|
19 |
)
|
20 |
-
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-v0.1"
|
21 |
-
headers = {"Authorization": f"Bearer {key}"}
|
22 |
-
|
23 |
-
def query(payload):
|
24 |
-
response = requests.post(API_URL, headers=headers, json=payload)
|
25 |
-
return response.json()
|
26 |
|
|
|
|
|
|
|
27 |
|
28 |
|
29 |
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
|
33 |
# tokenizer = AutoTokenizer.from_pretrained("WizardLM/WizardCoder-1B-V1.0")
|
34 |
# base_model = AutoModelForCausalLM.from_pretrained("WizardLM/WizardCoder-1B-V1.0")
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
do_sample=True,
|
43 |
-
top_p=0.95,
|
44 |
-
repetition_penalty=1.2,
|
45 |
-
)
|
46 |
# hf_llm = HuggingFacePipeline(pipeline=pipe)
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
@app.get("/")
|
50 |
def root():
|
51 |
return {"message": "R&D LLM API"}
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
|
59 |
-
async def askLLM(prompt):
|
60 |
-
output = pipe(prompt,do_sample=False)
|
61 |
-
return output
|
62 |
|
63 |
@app.post("/ask_llm")
|
64 |
-
async def ask_llm_endpoint(prompt: str):
|
65 |
-
|
66 |
-
result = pipe(prompt,do_sample=False)
|
67 |
return {"result": result}
|
68 |
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
from langchain.llms import OpenAI
|
76 |
|
|
|
17 |
allow_headers=["*"],
|
18 |
allow_credentials=True,
|
19 |
)
|
20 |
+
# API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-v0.1"
|
21 |
+
# headers = {"Authorization": f"Bearer {key}"}
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
# def query(payload):
|
24 |
+
# response = requests.post(API_URL, headers=headers, json=payload)
|
25 |
+
# return response.json()
|
26 |
|
27 |
|
28 |
|
29 |
|
30 |
+
def LLM(llm_name, length):
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(llm_name)
|
32 |
+
model = AutoModelForCausalLM.from_pretrained(llm_name)
|
33 |
+
pipe = pipeline("text-generation",
|
34 |
+
model=model,
|
35 |
+
tokenizer=tokenizer,
|
36 |
+
max_length=length,
|
37 |
+
do_sample=True,
|
38 |
+
top_p=0.95,
|
39 |
+
repetition_penalty=1.2,
|
40 |
+
)
|
41 |
+
return pipe
|
42 |
|
43 |
|
44 |
# tokenizer = AutoTokenizer.from_pretrained("WizardLM/WizardCoder-1B-V1.0")
|
45 |
# base_model = AutoModelForCausalLM.from_pretrained("WizardLM/WizardCoder-1B-V1.0")
|
46 |
+
# Mistral 7B
|
47 |
+
mistral_llm = LLM("mistralai/Mistral-7B-v0.1",30000)
|
48 |
+
|
49 |
+
|
50 |
+
# WizardCoder 13B
|
51 |
+
wizard_llm = LLM("WizardLM/WizardCoder-Python-13B-V1.0",8000)
|
52 |
+
|
|
|
|
|
|
|
|
|
53 |
# hf_llm = HuggingFacePipeline(pipeline=pipe)
|
54 |
|
55 |
+
def ask_model(model, prompt):
|
56 |
+
if(model == 'mistral'):
|
57 |
+
return mistral_llm(prompt)
|
58 |
+
if(model == 'wizard'):
|
59 |
+
return wizard_llm(prompt)
|
60 |
+
|
61 |
+
|
62 |
|
63 |
@app.get("/")
|
64 |
def root():
|
65 |
return {"message": "R&D LLM API"}
|
66 |
+
|
67 |
+
# @app.get("/get")
|
68 |
+
# def get():
|
69 |
+
# result = pipe("name 5 programming languages",do_sample=False)
|
70 |
+
# print(result)
|
71 |
+
# return {"message": result}
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
|
77 |
|
78 |
|
|
|
|
|
|
|
79 |
|
80 |
@app.post("/ask_llm")
|
81 |
+
async def ask_llm_endpoint(model:str, prompt: str):
|
82 |
+
result = ask_model(model,prompt)
|
|
|
83 |
return {"result": result}
|
84 |
|
85 |
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
// APIs
|
94 |
+
|
95 |
+
# @app.post("/ask_HFAPI")
|
96 |
+
# def ask_HFAPI_endpoint(prompt: str):
|
97 |
+
# result = query(prompt)
|
98 |
+
# return {"result": result}
|
99 |
|
100 |
from langchain.llms import OpenAI
|
101 |
|