File size: 3,844 Bytes
cff08e0 8ac4f9b 322c3d1 cff08e0 322c3d1 dc6f426 322c3d1 cff08e0 322c3d1 081c79a 322c3d1 cff08e0 1dbac02 322c3d1 cff08e0 322c3d1 cff08e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import streamlit as st
import uuid
import sys
import requests
from peft import *
import bitsandbytes as bnb
import pandas as pd
import torch
import torch.nn as nn
import transformers
from datasets import load_dataset
from huggingface_hub import notebook_login
from peft import (
LoraConfig,
PeftConfig,
get_peft_model,
prepare_model_for_kbit_training,
)
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
import pickle
USER_ICON = "images/user-icon.png"
AI_ICON = "images/ai-icon.png"
MAX_HISTORY_LENGTH = 5
if 'user_id' in st.session_state:
user_id = st.session_state['user_id']
else:
user_id = str(uuid.uuid4())
st.session_state['user_id'] = user_id
if 'chat_history' not in st.session_state:
st.session_state['chat_history'] = []
if "chats" not in st.session_state:
st.session_state.chats = [
{
'id': 0,
'question': '',
'answer': ''
}
]
if "questions" not in st.session_state:
st.session_state.questions = []
if "answers" not in st.session_state:
st.session_state.answers = []
if "input" not in st.session_state:
st.session_state.input = ""
st.markdown("""
<style>
.block-container {
padding-top: 32px;
padding-bottom: 32px;
padding-left: 0;
padding-right: 0;
}
.element-container img {
background-color: #000000;
}
.main-header {
font-size: 24px;
}
</style>
""", unsafe_allow_html=True)
# Load the model outside the handle_input() function
with open('model_saved.pkl', 'rb') as f:
model = pickle.load(f)
if not isinstance(model, str):
st.error("The loaded model is not valid.")
def write_top_bar():
col1, col2, col3 = st.columns([1,10,2])
with col1:
st.image(AI_ICON, use_column_width='always')
with col2:
header = "Cogwise Intelligent Assistant"
st.write(f"<h3 class='main-header'>{header}</h3>", unsafe_allow_html=True)
with col3:
clear = st.button("Clear Chat")
return clear
clear = write_top_bar()
if clear:
st.session_state.questions = []
st.session_state.answers = []
st.session_state.input = ""
st.session_state["chat_history"] = []
def handle_input():
input = st.session_state.input
question_with_id = {
'question': input,
'id': len(st.session_state.questions)
}
st.session_state.questions.append(question_with_id)
chat_history = st.session_state["chat_history"]
if len(chat_history) == MAX_HISTORY_LENGTH:
chat_history = chat_history[:-1]
prompt = input
answer = model # Replace the predict() method with the model itself
chat_history.append((input, answer))
st.session_state.answers.append({
'answer': answer,
'id': len(st.session_state.questions)
})
st.session_state.input = ""
def write_user_message(md):
col1, col2 = st.columns([1,12])
with col1:
st.image(USER_ICON, use_column_width='always')
with col2:
st.warning(md['question'])
def render_answer(answer):
col1, col2 = st.columns([1,12])
with col1:
st.image(AI_ICON, use_column_width='always')
with col2:
st.info(answer)
def write_chat_message(md, q):
chat = st.container()
with chat:
render_answer(md['answer'])
with st.container():
for (q, a) in zip(st.session_state.questions, st.session_state.answers):
write_user_message(q)
write_chat_message(a, q)
st.markdown('---')
input = st.text_input("You are talking to an AI, ask any question.", key="input", on_change=handle_input) |