Update app.py
Browse files
app.py
CHANGED
@@ -78,6 +78,9 @@ model_name = "tiiuae/falcon-7b-instruct"
|
|
78 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
79 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
80 |
|
|
|
|
|
|
|
81 |
def write_top_bar():
|
82 |
col1, col2, col3 = st.columns([1,10,2])
|
83 |
with col1:
|
@@ -109,8 +112,11 @@ def handle_input():
|
|
109 |
if len(chat_history) == MAX_HISTORY_LENGTH:
|
110 |
chat_history = chat_history[:-1]
|
111 |
|
|
|
|
|
|
|
112 |
# Generate response using the model
|
113 |
-
inputs = tokenizer.encode(
|
114 |
outputs = model.generate(inputs)
|
115 |
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
116 |
|
@@ -122,6 +128,12 @@ def handle_input():
|
|
122 |
})
|
123 |
st.session_state.input = ""
|
124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
def write_user_message(md):
|
126 |
col1, col2 = st.columns([1,12])
|
127 |
|
|
|
78 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
79 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
80 |
|
81 |
+
# Load the dataset
|
82 |
+
dataset = load_dataset("nisaar/Lawyer_GPT_India")
|
83 |
+
|
84 |
def write_top_bar():
|
85 |
col1, col2, col3 = st.columns([1,10,2])
|
86 |
with col1:
|
|
|
112 |
if len(chat_history) == MAX_HISTORY_LENGTH:
|
113 |
chat_history = chat_history[:-1]
|
114 |
|
115 |
+
# Find the most similar example in the dataset
|
116 |
+
closest_example = find_closest_example(input, dataset) # Implement your own logic to find the closest example
|
117 |
+
|
118 |
# Generate response using the model
|
119 |
+
inputs = tokenizer.encode(closest_example, return_tensors="pt")
|
120 |
outputs = model.generate(inputs)
|
121 |
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
122 |
|
|
|
128 |
})
|
129 |
st.session_state.input = ""
|
130 |
|
131 |
+
def find_closest_example(input, dataset):
|
132 |
+
# Implement your own logic to find the closest example in the dataset based on the user input
|
133 |
+
# You can use techniques like cosine similarity, semantic similarity, or any other approach that fits your dataset and requirements
|
134 |
+
# Return the closest example as a string
|
135 |
+
pass
|
136 |
+
|
137 |
def write_user_message(md):
|
138 |
col1, col2 = st.columns([1,12])
|
139 |
|