Spaces:
Running
Running
File size: 2,794 Bytes
e6da608 4a472df e6da608 4a472df bc0c6f3 4a472df e3f84d5 4a472df bc0c6f3 4a472df bc0c6f3 4a472df 0eb6af0 4a472df 0eb6af0 4a472df 0eb6af0 4a472df 0eb6af0 4a472df b1ea566 bc0c6f3 4a472df 7290ef1 4a472df d0794da 4a472df 7290ef1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
import os
import time
import gradio as gr
import numpy as np
from dotenv import load_dotenv
from elevenlabs import ElevenLabs
from fastapi import FastAPI
from fastrtc import (
AdditionalOutputs,
ReplyOnPause,
Stream,
get_stt_model,
get_twilio_turn_credentials,
)
from gradio.utils import get_space
from groq import Groq
from numpy.typing import NDArray
load_dotenv()
groq_client = Groq()
tts_client = ElevenLabs(api_key=os.getenv("ELEVENLABS_API_KEY"))
stt_model = get_stt_model()
# See "Talk to Claude" in Cookbook for an example of how to keep
# track of the chat history.
def response(
audio: tuple[int, NDArray[np.int16 | np.float32]],
chatbot: list[dict] | None = None,
):
chatbot = chatbot or []
messages = [{"role": d["role"], "content": d["content"]} for d in chatbot]
start = time.time()
text = stt_model.stt(audio)
print("transcription", time.time() - start)
print("prompt", text)
chatbot.append({"role": "user", "content": text})
yield AdditionalOutputs(chatbot)
messages.append({"role": "user", "content": text})
response_text = (
groq_client.chat.completions.create(
model="llama-3.1-8b-instant",
max_tokens=512,
messages=messages, # type: ignore
)
.choices[0]
.message.content
)
chatbot.append({"role": "assistant", "content": response_text})
for chunk in tts_client.text_to_speech.convert_as_stream(
text=response_text, # type: ignore
voice_id="JBFqnCBsd6RMkjVDRZzb",
model_id="eleven_multilingual_v2",
output_format="pcm_24000",
):
audio_array = np.frombuffer(chunk, dtype=np.int16).reshape(1, -1)
yield (24000, audio_array)
yield AdditionalOutputs(chatbot)
chatbot = gr.Chatbot(type="messages")
stream = Stream(
modality="audio",
mode="send-receive",
handler=ReplyOnPause(response, input_sample_rate=16000),
additional_outputs_handler=lambda a, b: b,
additional_inputs=[chatbot],
additional_outputs=[chatbot],
rtc_configuration=get_twilio_turn_credentials() if get_space() else None,
concurrency_limit=5 if get_space() else None,
time_limit=90 if get_space() else None,
ui_args={"title": "LLM Voice Chat (Powered by Groq, ElevenLabs, and WebRTC ⚡️)"},
)
# Mount the STREAM UI to the FastAPI app
# Because I don't want to build the UI manually
app = FastAPI()
app = gr.mount_gradio_app(app, stream.ui, path="/")
if __name__ == "__main__":
import os
os.environ["GRADIO_SSR_MODE"] = "false"
if (mode := os.getenv("MODE")) == "UI":
stream.ui.launch(server_port=7860)
elif mode == "PHONE":
stream.fastphone(host="0.0.0.0", port=7860)
else:
stream.ui.launch(server_port=7860)
|