Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files
app.py
CHANGED
@@ -1,22 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from fastrtc import (
|
2 |
-
ReplyOnPause,
|
3 |
AdditionalOutputs,
|
|
|
4 |
Stream,
|
|
|
5 |
aggregate_bytes_to_16bit,
|
6 |
get_twilio_turn_credentials,
|
7 |
-
WebRTCError,
|
8 |
stt,
|
9 |
-
audio_to_bytes,
|
10 |
)
|
11 |
-
import numpy as np
|
12 |
-
import gradio as gr
|
13 |
from gradio.utils import get_space
|
14 |
from groq import Groq
|
15 |
-
from elevenlabs import ElevenLabs
|
16 |
-
from dotenv import load_dotenv
|
17 |
-
import time
|
18 |
-
import os
|
19 |
-
from fastapi import FastAPI
|
20 |
|
21 |
load_dotenv()
|
22 |
groq_client = Groq()
|
@@ -34,11 +34,6 @@ def response(
|
|
34 |
messages = [{"role": d["role"], "content": d["content"]} for d in chatbot]
|
35 |
start = time.time()
|
36 |
text = stt(audio)
|
37 |
-
# text = groq_client.audio.transcriptions.create(
|
38 |
-
# file=("audio-file.mp3", audio_to_bytes(audio)),
|
39 |
-
# model="whisper-large-v3-turbo",
|
40 |
-
# response_format="verbose_json",
|
41 |
-
# ).text
|
42 |
print("transcription", time.time() - start)
|
43 |
print("prompt", text)
|
44 |
chatbot.append({"role": "user", "content": text})
|
@@ -66,7 +61,7 @@ def response(
|
|
66 |
audio_array = np.frombuffer(chunk, dtype=np.int16).reshape(1, -1)
|
67 |
yield (24000, audio_array)
|
68 |
yield AdditionalOutputs(chatbot)
|
69 |
-
except Exception
|
70 |
import traceback
|
71 |
|
72 |
traceback.print_exc()
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
from elevenlabs import ElevenLabs
|
8 |
+
from fastapi import FastAPI
|
9 |
from fastrtc import (
|
|
|
10 |
AdditionalOutputs,
|
11 |
+
ReplyOnPause,
|
12 |
Stream,
|
13 |
+
WebRTCError,
|
14 |
aggregate_bytes_to_16bit,
|
15 |
get_twilio_turn_credentials,
|
|
|
16 |
stt,
|
|
|
17 |
)
|
|
|
|
|
18 |
from gradio.utils import get_space
|
19 |
from groq import Groq
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
load_dotenv()
|
22 |
groq_client = Groq()
|
|
|
34 |
messages = [{"role": d["role"], "content": d["content"]} for d in chatbot]
|
35 |
start = time.time()
|
36 |
text = stt(audio)
|
|
|
|
|
|
|
|
|
|
|
37 |
print("transcription", time.time() - start)
|
38 |
print("prompt", text)
|
39 |
chatbot.append({"role": "user", "content": text})
|
|
|
61 |
audio_array = np.frombuffer(chunk, dtype=np.int16).reshape(1, -1)
|
62 |
yield (24000, audio_array)
|
63 |
yield AdditionalOutputs(chatbot)
|
64 |
+
except Exception:
|
65 |
import traceback
|
66 |
|
67 |
traceback.print_exc()
|