File size: 5,005 Bytes
8cb6f0a
036e058
 
 
 
 
e085921
8cb6f0a
e085921
8cb6f0a
6ddbbc3
 
8cb6f0a
 
661887e
e085921
 
 
 
 
 
 
 
 
 
 
 
 
661887e
e085921
 
661887e
 
 
 
 
e085921
 
 
8cb6f0a
e085921
 
 
8cb6f0a
e085921
 
661887e
036e058
e085921
036e058
 
661887e
e085921
fe51424
 
e085921
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe51424
661887e
 
036e058
 
 
 
661887e
e085921
 
036e058
 
e085921
 
661887e
e085921
 
fe51424
661887e
fe51424
e085921
 
 
 
 
 
 
fe51424
e085921
 
661887e
036e058
 
661887e
 
036e058
661887e
 
e085921
661887e
 
fe51424
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import os
import torch
import torchaudio
import soundfile as sf
from flask import Flask, request, jsonify, send_file
from flask_cors import CORS
from transformers import Wav2Vec2ForCTC, AutoProcessor, VitsModel, AutoTokenizer

# Set cache directories
os.environ["HF_HOME"] = "/tmp/hf_home"
os.environ["TRANSFORMERS_CACHE"] = "/tmp/transformers_cache"
os.environ["HUGGINGFACE_HUB_CACHE"] = "/tmp/huggingface_cache"
os.environ["TORCH_HOME"] = "/tmp/torch_home"

app = Flask(__name__)
CORS(app)

# ASR Model (facebook/mms-1b-all)
ASR_MODEL_ID = "Coco-18/mms-asr-tgl-en-safetensor"
asr_processor = AutoProcessor.from_pretrained(ASR_MODEL_ID)
asr_model = Wav2Vec2ForCTC.from_pretrained(ASR_MODEL_ID)

# Language-specific configurations
LANGUAGE_CODES = {
    "kapampangan": "pam",
    "tagalog": "tgl",
    "english": "eng"
}

# TTS Models (Kapampangan, Tagalog, English)
TTS_MODELS = {
    "kapampangan": "facebook/mms-tts-pam",
    "tagalog": "facebook/mms-tts-tgl",
    "english": "facebook/mms-tts-eng"
}

tts_models = {}
tts_processors = {}
for lang, model_id in TTS_MODELS.items():
    try:
        tts_models[lang] = VitsModel.from_pretrained(model_id, cache_dir="/tmp/huggingface_cache")
        tts_processors[lang] = AutoTokenizer.from_pretrained(model_id, cache_dir="/tmp/huggingface_cache")
        print(f"βœ… TTS Model loaded: {lang}")
    except Exception as e:
        print(f"❌ Error loading {lang} TTS model: {e}")
        tts_models[lang] = None

# Constants
SAMPLE_RATE = 16000
OUTPUT_DIR = "/tmp/"
os.makedirs(OUTPUT_DIR, exist_ok=True)


@app.route("/", methods=["GET"])
def home():
    return jsonify({"message": "Speech API is running."})


@app.route("/asr", methods=["POST"])
def transcribe_audio():
    try:
        if "audio" not in request.files:
            return jsonify({"error": "No audio file uploaded"}), 400

        audio_file = request.files["audio"]
        language = request.form.get("language", "english").lower()

        # Validate language
        if language not in LANGUAGE_CODES:
            return jsonify({"error": f"Unsupported language: {language}"}), 400

        # Get the language code for the ASR model
        lang_code = LANGUAGE_CODES[language]

        # Save audio file temporarily
        audio_path = os.path.join(OUTPUT_DIR, "input_audio.wav")
        audio_file.save(audio_path)

        # Load and process audio
        try:
            waveform, sr = torchaudio.load(audio_path)
            if sr != SAMPLE_RATE:
                waveform = torchaudio.transforms.Resample(sr, SAMPLE_RATE)(waveform)

            # Normalize audio (recommended for Wav2Vec2)
            waveform = waveform / torch.max(torch.abs(waveform))

            # Process audio for ASR
            inputs = asr_processor(
                waveform.squeeze().numpy(),
                sampling_rate=SAMPLE_RATE,
                return_tensors="pt",
                language=lang_code  # Set the language code
            )
        except Exception as e:
            return jsonify({"error": f"Error processing audio: {str(e)}"}), 400

        # Transcribe
        with torch.no_grad():
            logits = asr_model(**inputs).logits
        ids = torch.argmax(logits, dim=-1)[0]
        transcription = asr_processor.decode(ids)

        # Log the transcription
        print(f"Transcription ({language}): {transcription}")

        return jsonify({"transcription": transcription})
    except Exception as e:
        print(f"ASR error: {str(e)}")
        return jsonify({"error": f"ASR failed: {str(e)}"}), 500


@app.route("/tts", methods=["POST"])
def generate_tts():
    try:
        data = request.get_json()
        text_input = data.get("text", "").strip()
        language = data.get("language", "kapampangan").lower()

        if language not in TTS_MODELS:
            return jsonify({"error": "Invalid language"}), 400
        if not text_input:
            return jsonify({"error": "No text provided"}), 400
        if tts_models[language] is None:
            return jsonify({"error": "TTS model not available"}), 500

        processor = tts_processors[language]
        model = tts_models[language]
        inputs = processor(text_input, return_tensors="pt")

        with torch.no_grad():
            output = model.generate(**inputs)

        waveform = output.cpu().numpy().flatten()
        output_filename = os.path.join(OUTPUT_DIR, f"{language}_tts.wav")
        sf.write(output_filename, waveform, SAMPLE_RATE)

        return jsonify({"file_url": f"/download/{language}_tts.wav"})
    except Exception as e:
        return jsonify({"error": f"TTS failed: {e}"}), 500


@app.route("/download/<filename>", methods=["GET"])
def download_audio(filename):
    file_path = os.path.join(OUTPUT_DIR, filename)
    if os.path.exists(file_path):
        return send_file(file_path, mimetype="audio/wav", as_attachment=True)
    return jsonify({"error": "File not found"}), 404


if __name__ == "__main__":
    app.run(host="0.0.0.0", port=7860, debug=True)