File size: 22,705 Bytes
e13b2ed 4c12485 e13b2ed 4c12485 e13b2ed 4c12485 e13b2ed 4c12485 22eafa7 4c12485 e13b2ed 4c12485 e13b2ed 4c12485 e181043 e13b2ed 4c12485 e13b2ed 4c12485 e13b2ed 4c12485 e13b2ed fec0be4 e13b2ed 4c12485 e13b2ed 22eafa7 e13b2ed 4c12485 e13b2ed 22eafa7 4c12485 e13b2ed 4c12485 e13b2ed 4c12485 e13b2ed 4c12485 e13b2ed 4c12485 e13b2ed 4c12485 e13b2ed 4c12485 e13b2ed 4c12485 e13b2ed 4c12485 e13b2ed 4c12485 e13b2ed 4c12485 e13b2ed 4c12485 22eafa7 4c12485 e13b2ed 936eff8 ceb8cef 4872e0f 7c33098 e13b2ed 22eafa7 e13b2ed 4c12485 e13b2ed 4c12485 22eafa7 4c12485 e13b2ed 4c12485 22eafa7 e13b2ed 4c12485 e13b2ed 4c12485 22eafa7 e13b2ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 |
# app.py - Main application file (OPTIMIZED FOR HUGGING FACE SPACES)
import os
import sys
import logging
import traceback
import time
import uuid
import threading
from functools import lru_cache
import concurrent.futures
from collections import defaultdict, deque
# Configure logging - keeping it simple for Hugging Face Spaces
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - [%(thread)d] %(message)s',
datefmt='%Y-%m-%d %H:%M:%S'
)
logger = logging.getLogger("speech_api")
# Simple in-memory rate limiting
REQUEST_HISTORY = defaultdict(deque)
RATE_LIMIT_WINDOW = 60 # seconds
MAX_REQUESTS_PER_WINDOW = 15 # More conservative for HF
rate_limit_lock = threading.Lock()
# Small thread pool suitable for HF Spaces
MAX_WORKERS = 3 # Conservative number for HF Spaces
worker_pool = concurrent.futures.ThreadPoolExecutor(max_workers=MAX_WORKERS)
# Set all cache directories to locations within /tmp
cache_dirs = {
"HF_HOME": "/tmp/hf_home",
"TRANSFORMERS_CACHE": "/tmp/transformers_cache",
"HUGGINGFACE_HUB_CACHE": "/tmp/huggingface_hub_cache",
"TORCH_HOME": "/tmp/torch_home",
"XDG_CACHE_HOME": "/tmp/xdg_cache"
}
# Set environment variables and create directories
for env_var, path in cache_dirs.items():
os.environ[env_var] = path
try:
os.makedirs(path, exist_ok=True)
logger.info(f"π Created cache directory: {path}")
except Exception as e:
logger.error(f"β Failed to create directory {path}: {str(e)}")
# Now import the rest of the libraries
try:
import librosa
import glob
import numpy as np
import torch
from pydub import AudioSegment
import tempfile
import soundfile as sf
from flask import Flask, request, jsonify, send_file, g
from flask_cors import CORS
from werkzeug.utils import secure_filename
# Import functionality from other modules
from translator import (
init_models, check_model_status, handle_asr_request,
handle_tts_request, handle_translation_request
)
from evaluate import (
handle_evaluation_request, handle_upload_reference,
init_reference_audio, calculate_similarity, preprocess_all_references,
get_preprocessing_status # Import the new function
)
logger.info("β
All required libraries imported successfully")
except ImportError as e:
logger.critical(f"β Failed to import necessary libraries: {str(e)}")
sys.exit(1)
# Check CUDA availability and optimize memory usage
if torch.cuda.is_available():
logger.info(f"π CUDA available: {torch.cuda.get_device_name(0)}")
device = "cuda"
# Optimize CUDA memory usage for HF Spaces
torch.cuda.empty_cache()
# Conservative memory settings for HF Spaces
torch.cuda.set_per_process_memory_fraction(0.7) # Don't use all GPU memory
torch.backends.cudnn.benchmark = True # Speed up operations
else:
logger.info("β οΈ CUDA not available, using CPU")
device = "cpu"
# Constants
SAMPLE_RATE = 16000
OUTPUT_DIR = "/tmp/audio_outputs"
REFERENCE_AUDIO_DIR = "./reference_audios"
MAX_CACHE_SIZE = 50 # Smaller cache for HF Spaces
# In-memory caches
asr_cache = {}
tts_cache = {}
translation_cache = {}
try:
os.makedirs(OUTPUT_DIR, exist_ok=True)
logger.info(f"π Created output directory: {OUTPUT_DIR}")
except Exception as e:
logger.error(f"β Failed to create output directory: {str(e)}")
# Create user-specific directories to prevent conflicts
def get_user_output_dir(user_id=None):
"""Create and return a user-specific output directory"""
if user_id is None:
user_id = str(uuid.uuid4())[:8]
user_dir = os.path.join(OUTPUT_DIR, user_id)
os.makedirs(user_dir, exist_ok=True)
return user_dir
# Initialize Flask app
app = Flask(__name__)
CORS(app)
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB max upload for HF
# Load models
init_models(device)
# Rate limit decorator - simple in-memory implementation
def rate_limit(f):
from functools import wraps # Import wraps at the top of the decorator
@wraps(f) # Add this line to preserve function metadata
def decorated_function(*args, **kwargs):
client_ip = request.remote_addr or request.headers.get('X-Forwarded-For', 'unknown')
with rate_limit_lock:
current_time = time.time()
# Add current request timestamp
if client_ip not in REQUEST_HISTORY:
REQUEST_HISTORY[client_ip] = deque(maxlen=MAX_REQUESTS_PER_WINDOW)
# Clean old requests (older than window)
while REQUEST_HISTORY[client_ip] and current_time - REQUEST_HISTORY[client_ip][0] > RATE_LIMIT_WINDOW:
REQUEST_HISTORY[client_ip].popleft()
# Check if rate limit is exceeded
if len(REQUEST_HISTORY[client_ip]) >= MAX_REQUESTS_PER_WINDOW:
logger.warning(f"β οΈ Rate limit exceeded for {client_ip}")
return jsonify({
"error": "Rate limit exceeded",
"message": "Too many requests, please try again later"
}), 429
# Add this request
REQUEST_HISTORY[client_ip].append(current_time)
return f(*args, **kwargs)
return decorated_function
# Caching helpers
def compute_hash(data):
"""Compute a hash for caching purposes"""
import hashlib
if isinstance(data, str):
return hashlib.md5(data.encode('utf-8')).hexdigest()
return hashlib.md5(str(data).encode('utf-8')).hexdigest()
# Cache decorator for responses
def cache_response(cache_dict, key_fn, max_size=MAX_CACHE_SIZE):
def decorator(f):
def wrapper(*args, **kwargs):
key = key_fn(*args, **kwargs)
# Check cache
if key in cache_dict:
logger.info(f"β
Cache hit for {f.__name__}")
return cache_dict[key]
# Get actual response
response = f(*args, **kwargs)
# Store in cache if it's a successful response
if isinstance(response, tuple):
result, status_code = response
if status_code < 400: # Only cache successful responses
cache_dict[key] = response
else:
cache_dict[key] = response
# Limit cache size
if len(cache_dict) > max_size:
# Remove random item (simple approach for HF Spaces)
cache_dict.pop(next(iter(cache_dict)))
return response
return wrapper
return decorator
# Request tracking middleware
@app.before_request
def before_request():
g.request_id = str(uuid.uuid4())[:8]
g.start_time = time.time()
# Initialize reference directory if needed
if not hasattr(g, 'initialized'):
global REFERENCE_AUDIO_DIR
# This might return an updated path if the original fails
updated_ref_dir = init_reference_audio(REFERENCE_AUDIO_DIR, OUTPUT_DIR)
if updated_ref_dir and updated_ref_dir != REFERENCE_AUDIO_DIR:
REFERENCE_AUDIO_DIR = updated_ref_dir
logger.info(f"π Updated reference audio directory to: {REFERENCE_AUDIO_DIR}")
g.initialized = True
# Create user-specific directory
user_id = request.headers.get('X-User-ID', str(uuid.uuid4())[:8])
g.user_output_dir = get_user_output_dir(user_id)
logger.info(f"[{g.request_id}] π {request.method} {request.path} started")
@app.after_request
def after_request(response):
if hasattr(g, 'request_id') and hasattr(g, 'start_time'):
duration = time.time() - g.start_time
logger.info(f"[{g.request_id}] β
Completed in {duration:.2f}s with status {response.status_code}")
# Set cache headers
if request.endpoint == 'download_audio':
response.headers['Cache-Control'] = 'public, max-age=86400' # Cache audio for a day
else:
response.headers['Cache-Control'] = 'no-store' # No caching for API responses
return response
# Global error handler
@app.errorhandler(Exception)
def handle_exception(e):
logger.error(f"β Unhandled exception: {str(e)}")
logger.debug(traceback.format_exc())
return jsonify({
"error": "Internal server error",
"message": str(e)
}), 500
# Define routes
@app.route("/", methods=["GET"])
def home():
return jsonify({
"message": "Speech API is running",
"status": "active",
"version": "1.2", # Updated version to reflect reference preprocessing
"environment": "Hugging Face Spaces"
})
@app.route("/health", methods=["GET"])
def health_check():
health_status = check_model_status()
health_status["api_status"] = "online"
health_status["device"] = device
# Add memory usage info
if torch.cuda.is_available():
health_status["memory"] = {
"cuda_allocated_mb": round(torch.cuda.memory_allocated() / (1024 * 1024), 2),
"cuda_reserved_mb": round(torch.cuda.memory_reserved() / (1024 * 1024), 2)
}
# Add cache stats
health_status["cache_stats"] = {
"asr_cache_size": len(asr_cache),
"tts_cache_size": len(tts_cache),
"translation_cache_size": len(translation_cache)
}
# Add reference preprocessing status
health_status["reference_preprocessing"] = get_preprocessing_status()
return jsonify(health_status)
# ASR with optimizations
@app.route("/asr", methods=["POST"])
@rate_limit
def transcribe_audio():
# Get user-specific output directory
user_output_dir = g.user_output_dir if hasattr(g, 'user_output_dir') else OUTPUT_DIR
# Check cache first (simple caching logic)
if 'audio' in request.files:
audio_file = request.files['audio']
language = request.form.get("language", "english").lower()
# Create a simple cache key
audio_content = audio_file.read()
audio_file.seek(0) # Reset file pointer
cache_key = f"asr_{compute_hash(audio_content)}_{language}"
if cache_key in asr_cache:
logger.info(f"[{g.request_id}] β
Using cached ASR result")
return asr_cache[cache_key]
# Process the request normally
result = handle_asr_request(request, user_output_dir, SAMPLE_RATE)
# Cache successful responses
if isinstance(result, tuple):
response, status_code = result
if status_code == 200:
asr_cache[cache_key] = result
# Limit cache size
if len(asr_cache) > MAX_CACHE_SIZE:
asr_cache.pop(next(iter(asr_cache)))
return result
@app.route("/tts", methods=["POST"])
@rate_limit
def generate_tts():
# Get user-specific output directory
user_output_dir = g.user_output_dir if hasattr(g, 'user_output_dir') else OUTPUT_DIR
# Check cache first
if request.is_json:
data = request.get_json()
if data:
text = data.get("text", "").strip()
language = data.get("language", "kapampangan").lower()
cache_key = f"tts_{compute_hash(text)}_{language}"
if cache_key in tts_cache:
logger.info(f"[{g.request_id}] β
Using cached TTS result")
return tts_cache[cache_key]
# Process the request normally
result = handle_tts_request(request, user_output_dir)
# Cache successful responses
if isinstance(result, tuple):
response, status_code = result
if status_code == 200 and request.is_json:
tts_cache[cache_key] = result
# Limit cache size
if len(tts_cache) > MAX_CACHE_SIZE:
tts_cache.pop(next(iter(tts_cache)))
return result
@app.route("/translate", methods=["POST"])
@rate_limit
def translate_text():
# Check cache first
if request.is_json:
data = request.get_json()
if data:
text = data.get("text", "").strip()
source_language = data.get("source_language", "").lower()
target_language = data.get("target_language", "").lower()
cache_key = f"translate_{compute_hash(text)}_{source_language}_{target_language}"
if cache_key in translation_cache:
logger.info(f"[{g.request_id}] β
Using cached translation result")
return translation_cache[cache_key]
# Process the request normally
result = handle_translation_request(request)
# Cache successful responses
if isinstance(result, tuple):
response, status_code = result
if status_code == 200 and request.is_json:
translation_cache[cache_key] = result
# Limit cache size
if len(translation_cache) > MAX_CACHE_SIZE:
translation_cache.pop(next(iter(translation_cache)))
return result
@app.route("/download/<filename>", methods=["GET"])
def download_audio(filename):
# First try user-specific directory if available
if hasattr(g, 'user_output_dir'):
file_path = os.path.join(g.user_output_dir, filename)
if os.path.exists(file_path):
logger.info(f"π€ Serving user audio file: {file_path}")
return send_file(file_path, mimetype="audio/wav", as_attachment=True)
# Then try main output directory
file_path = os.path.join(OUTPUT_DIR, filename)
if os.path.exists(file_path):
logger.info(f"π€ Serving audio file: {file_path}")
return send_file(file_path, mimetype="audio/wav", as_attachment=True)
# Check for any subdirectories (simplified approach)
for root, dirs, files in os.walk(OUTPUT_DIR):
if filename in files:
full_path = os.path.join(root, filename)
logger.info(f"π€ Serving found audio file: {full_path}")
return send_file(full_path, mimetype="audio/wav", as_attachment=True)
logger.warning(f"β οΈ Requested file not found: {filename}")
return jsonify({"error": "File not found"}), 404
@app.route("/evaluate", methods=["POST"])
@rate_limit
def evaluate_pronunciation():
# Get user-specific output directory
user_output_dir = g.user_output_dir if hasattr(g, 'user_output_dir') else OUTPUT_DIR
return handle_evaluation_request(request, REFERENCE_AUDIO_DIR, user_output_dir, SAMPLE_RATE)
# New endpoint to check preprocessing status
@app.route("/reference_preprocessing_status", methods=["GET"])
def reference_preprocessing_status():
"""Get the current status of reference audio preprocessing"""
return jsonify(get_preprocessing_status())
@app.route("/check_references", methods=["GET"])
def check_references():
"""Optimized endpoint to check if reference files exist"""
ref_patterns = ["mayap_a_abak", "mayap_a_ugtu", "mayap_a_gatpanapun", "mayap_a_bengi",
"komusta_ka", "malaus_ko_pu", "malaus_kayu", "agaganaka_da_ka",
"pagdulapan_da_ka", "kaluguran_da_ka", "dakal_a_salamat", "panapaya_mu_ku",
"wa", "ali", "tuknang", "lagwa", "galo", "buri_ke_ini", "tara_na",
"nokarin_ka_ibat", "nokarin_ka_munta", "atiu_na_ku", "nanung_panayan_mu",
"mako_na_ka", "muli_ta_na", "nanu_ing_pengan_mu", "mekeni", "mengan_na_ka",
"munta_ka_karin", "magkanu_ini", "mimingat_ka", "mangan_ta_na", "lakwan_da_ka",
"nanu_maliari_kung_daptan_keka", "pilan_na_ka_banwa", "saliwan_ke_ini",
"makananu_munta_king","adwa", "anam", "apat", "apulu", "atlu", "dinalan", "libu", "lima",
"metung", "pitu", "siyam", "walu", "masala", "madalumdum", "maragul", "marimla", "malagu", "marok", "mababa", "malapit", "matuling", "maputi",
"arung", "asbuk", "balugbug", "bitis", "buntuk", "butit", "gamat", "kuku", "salu", "tud",
"pisan", "dara", "achi", "apu", "ima", "tatang", "pengari", "koya", "kapatad", "wali",
"pasbul", "awang", "dagis", "bale", "ulas", "sambra", "sulu", "pitudturan", "luklukan", "ulnan"
]
# Get a summary instead of details to reduce response size
summary = {
"reference_audio_dir": REFERENCE_AUDIO_DIR,
"directory_exists": os.path.exists(REFERENCE_AUDIO_DIR),
"total_patterns": len(ref_patterns),
"existing_patterns": 0,
"total_files": 0,
"preprocessing_status": get_preprocessing_status() # Add preprocessing status
}
for pattern in ref_patterns:
pattern_dir = os.path.join(REFERENCE_AUDIO_DIR, pattern)
if os.path.exists(pattern_dir):
wav_files = glob.glob(os.path.join(pattern_dir, "*.wav"))
if wav_files:
summary["existing_patterns"] += 1
summary["total_files"] += len(wav_files)
return jsonify(summary)
# Add detailed reference check as a separate endpoint
@app.route("/check_references/detailed", methods=["GET"])
def check_references_detailed():
"""Get detailed information for specific reference patterns"""
patterns = request.args.get('patterns', '').split(',')
# If no patterns specified, return the first 10 (avoid heavy response)
if not patterns or patterns == ['']:
ref_patterns = ["mayap_a_abak", "mayap_a_ugtu", "mayap_a_gatpanapun", "mayap_a_bengi",
"komusta_ka", "malaus_ko_pu", "malaus_kayu", "agaganaka_da_ka",
"pagdulapan_da_ka", "kaluguran_da_ka"]
else:
ref_patterns = [p.strip() for p in patterns if p.strip()]
results = {}
for pattern in ref_patterns:
pattern_dir = os.path.join(REFERENCE_AUDIO_DIR, pattern)
if os.path.exists(pattern_dir):
wav_files = glob.glob(os.path.join(pattern_dir, "*.wav"))
results[pattern] = {
"exists": True,
"path": pattern_dir,
"file_count": len(wav_files),
"files": [os.path.basename(f) for f in wav_files]
}
else:
results[pattern] = {
"exists": False,
"path": pattern_dir
}
return jsonify({
"reference_audio_dir": REFERENCE_AUDIO_DIR,
"patterns": results,
"preprocessing_status": get_preprocessing_status() # Add preprocessing status
})
@app.route("/upload_reference", methods=["POST"])
@rate_limit
def upload_reference_audio():
return handle_upload_reference(request, REFERENCE_AUDIO_DIR, SAMPLE_RATE)
# Add an endpoint to manually trigger reference preprocessing
@app.route("/preprocess_references", methods=["POST"])
def manual_preprocess_references():
"""Manually trigger reference audio preprocessing"""
# Only allow from local or with API key
if not (request.remote_addr == '127.0.0.1' or
request.headers.get('X-Admin-Key') == os.environ.get('ADMIN_KEY', 'admin-secret')):
return jsonify({"error": "Unauthorized"}), 403
# Start preprocessing in a background thread to avoid blocking
def preprocess_worker():
preprocess_all_references(REFERENCE_AUDIO_DIR, SAMPLE_RATE)
preprocessing_thread = threading.Thread(target=preprocess_worker)
preprocessing_thread.daemon = True
preprocessing_thread.start()
return jsonify({
"message": "Reference preprocessing started in background",
"current_status": get_preprocessing_status()
})
# Add a cleanup endpoint
@app.route("/cleanup", methods=["POST"])
def cleanup_files():
"""Clean up old files to free space (important for HF Spaces)"""
try:
# Only allow from local or with API key
if not (request.remote_addr == '127.0.0.1' or
request.headers.get('X-Cleanup-Key') == os.environ.get('CLEANUP_KEY', 'cleanup-secret')):
return jsonify({"error": "Unauthorized"}), 403
# Delete files older than 2 hours
cutoff_time = time.time() - 7200 # 2 hours in seconds
deleted_count = 0
for root, dirs, files in os.walk(OUTPUT_DIR):
for file in files:
try:
file_path = os.path.join(root, file)
if os.path.getmtime(file_path) < cutoff_time:
os.remove(file_path)
deleted_count += 1
except Exception as e:
logger.warning(f"β οΈ Failed to delete {file}: {e}")
# Clear empty directories
for root, dirs, files in os.walk(OUTPUT_DIR, topdown=False):
for dir_name in dirs:
try:
dir_path = os.path.join(root, dir_name)
if not os.listdir(dir_path):
os.rmdir(dir_path)
except Exception as e:
logger.warning(f"β οΈ Failed to remove empty dir {dir_name}: {e}")
# Clear torch cache
if torch.cuda.is_available():
torch.cuda.empty_cache()
return jsonify({
"message": "Cleanup completed",
"files_deleted": deleted_count
})
except Exception as e:
logger.error(f"β Cleanup error: {str(e)}")
return jsonify({"error": str(e)}), 500
if __name__ == "__main__":
# This might return an updated path if the original fails
updated_ref_dir = init_reference_audio(REFERENCE_AUDIO_DIR, OUTPUT_DIR)
if updated_ref_dir and updated_ref_dir != REFERENCE_AUDIO_DIR:
REFERENCE_AUDIO_DIR = updated_ref_dir
logger.info(f"π Updated reference audio directory to: {REFERENCE_AUDIO_DIR}")
logger.info("π Starting Speech API server optimized for Hugging Face Spaces")
# Get the status for logging
status = check_model_status()
logger.info(f"π System status: ASR model: {'β
' if status['asr_model'] == 'loaded' else 'β'}")
for lang, model_status in status['tts_models'].items():
logger.info(f"π TTS model {lang}: {'β
' if model_status == 'loaded' else 'β'}")
# Log reference preprocessing status
preproc_status = get_preprocessing_status()
logger.info(f"π Reference preprocessing: {'β
Complete' if preproc_status['complete'] else 'π In progress'}")
logger.info(f"π Preprocessed files: {preproc_status['preprocessed_files']}")
# Use threaded=True for better performance
app.run(host="0.0.0.0", port=7860, debug=False, threaded=True) |