Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,34 @@
|
|
1 |
-
# app.py - Main application file
|
2 |
|
3 |
import os
|
4 |
import sys
|
5 |
import logging
|
6 |
import traceback
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
logging.basicConfig(
|
10 |
level=logging.INFO,
|
11 |
-
format='%(asctime)s - %(levelname)s - %(message)s',
|
12 |
datefmt='%Y-%m-%d %H:%M:%S'
|
13 |
)
|
14 |
logger = logging.getLogger("speech_api")
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
# Set all cache directories to locations within /tmp
|
17 |
cache_dirs = {
|
18 |
"HF_HOME": "/tmp/hf_home",
|
@@ -59,10 +75,15 @@ except ImportError as e:
|
|
59 |
logger.critical(f"β Failed to import necessary libraries: {str(e)}")
|
60 |
sys.exit(1)
|
61 |
|
62 |
-
# Check CUDA availability
|
63 |
if torch.cuda.is_available():
|
64 |
logger.info(f"π CUDA available: {torch.cuda.get_device_name(0)}")
|
65 |
device = "cuda"
|
|
|
|
|
|
|
|
|
|
|
66 |
else:
|
67 |
logger.info("β οΈ CUDA not available, using CPU")
|
68 |
device = "cpu"
|
@@ -71,6 +92,12 @@ else:
|
|
71 |
SAMPLE_RATE = 16000
|
72 |
OUTPUT_DIR = "/tmp/audio_outputs"
|
73 |
REFERENCE_AUDIO_DIR = "./reference_audios"
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
try:
|
76 |
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
@@ -78,62 +105,311 @@ try:
|
|
78 |
except Exception as e:
|
79 |
logger.error(f"β Failed to create output directory: {str(e)}")
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
# Initialize Flask app
|
82 |
app = Flask(__name__)
|
83 |
CORS(app)
|
|
|
84 |
|
85 |
# Load models
|
86 |
init_models(device)
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
# Define routes
|
90 |
@app.route("/", methods=["GET"])
|
91 |
def home():
|
92 |
-
return jsonify({
|
93 |
-
|
|
|
|
|
|
|
|
|
94 |
|
95 |
@app.route("/health", methods=["GET"])
|
96 |
def health_check():
|
97 |
health_status = check_model_status()
|
98 |
health_status["api_status"] = "online"
|
99 |
health_status["device"] = device
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
return jsonify(health_status)
|
101 |
|
102 |
-
|
103 |
@app.route("/asr", methods=["POST"])
|
|
|
104 |
def transcribe_audio():
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
@app.route("/tts", methods=["POST"])
|
|
|
109 |
def generate_tts():
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
@app.route("/translate", methods=["POST"])
|
|
|
114 |
def translate_text():
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
@app.route("/download/<filename>", methods=["GET"])
|
119 |
def download_audio(filename):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
file_path = os.path.join(OUTPUT_DIR, filename)
|
121 |
if os.path.exists(file_path):
|
122 |
logger.info(f"π€ Serving audio file: {file_path}")
|
123 |
return send_file(file_path, mimetype="audio/wav", as_attachment=True)
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
return jsonify({"error": "File not found"}), 404
|
127 |
|
128 |
-
|
129 |
@app.route("/evaluate", methods=["POST"])
|
|
|
130 |
def evaluate_pronunciation():
|
131 |
-
|
132 |
-
|
|
|
133 |
|
134 |
@app.route("/check_references", methods=["GET"])
|
135 |
def check_references():
|
136 |
-
"""
|
137 |
ref_patterns = ["mayap_a_abak", "mayap_a_ugtu", "mayap_a_gatpanapun", "mayap_a_bengi",
|
138 |
"komusta_ka", "malaus_ko_pu", "malaus_kayu", "agaganaka_da_ka",
|
139 |
"pagdulapan_da_ka", "kaluguran_da_ka", "dakal_a_salamat", "panapaya_mu_ku",
|
@@ -148,8 +424,41 @@ def check_references():
|
|
148 |
"pisan", "dara", "achi", "apu", "ima", "tatang", "pengari", "koya", "kapatad", "wali",
|
149 |
"pasbul", "awang", "dagis", "bale", "ulas", "sambra", "sulu", "pitudturan", "luklukan", "ulnan"
|
150 |
]
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
for pattern in ref_patterns:
|
154 |
pattern_dir = os.path.join(REFERENCE_AUDIO_DIR, pattern)
|
155 |
if os.path.exists(pattern_dir):
|
@@ -168,36 +477,68 @@ def check_references():
|
|
168 |
|
169 |
return jsonify({
|
170 |
"reference_audio_dir": REFERENCE_AUDIO_DIR,
|
171 |
-
"directory_exists": os.path.exists(REFERENCE_AUDIO_DIR),
|
172 |
"patterns": results
|
173 |
})
|
174 |
|
175 |
-
|
176 |
@app.route("/upload_reference", methods=["POST"])
|
|
|
177 |
def upload_reference_audio():
|
178 |
return handle_upload_reference(request, REFERENCE_AUDIO_DIR, SAMPLE_RATE)
|
179 |
|
180 |
-
|
181 |
-
@app.
|
182 |
-
def
|
183 |
-
|
184 |
-
|
185 |
-
#
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
if __name__ == "__main__":
|
193 |
-
|
194 |
# This might return an updated path if the original fails
|
195 |
updated_ref_dir = init_reference_audio(REFERENCE_AUDIO_DIR, OUTPUT_DIR)
|
196 |
if updated_ref_dir and updated_ref_dir != REFERENCE_AUDIO_DIR:
|
197 |
REFERENCE_AUDIO_DIR = updated_ref_dir
|
198 |
logger.info(f"π Updated reference audio directory to: {REFERENCE_AUDIO_DIR}")
|
199 |
|
200 |
-
logger.info("π Starting Speech API server")
|
201 |
|
202 |
# Get the status for logging
|
203 |
status = check_model_status()
|
@@ -205,4 +546,5 @@ if __name__ == "__main__":
|
|
205 |
for lang, model_status in status['tts_models'].items():
|
206 |
logger.info(f"π TTS model {lang}: {'β
' if model_status == 'loaded' else 'β'}")
|
207 |
|
208 |
-
|
|
|
|
1 |
+
# app.py - Main application file (OPTIMIZED FOR HUGGING FACE SPACES)
|
2 |
|
3 |
import os
|
4 |
import sys
|
5 |
import logging
|
6 |
import traceback
|
7 |
+
import time
|
8 |
+
import uuid
|
9 |
+
import threading
|
10 |
+
from functools import lru_cache
|
11 |
+
import concurrent.futures
|
12 |
+
from collections import defaultdict, deque
|
13 |
+
|
14 |
+
# Configure logging - keeping it simple for Hugging Face Spaces
|
15 |
logging.basicConfig(
|
16 |
level=logging.INFO,
|
17 |
+
format='%(asctime)s - %(levelname)s - [%(thread)d] %(message)s',
|
18 |
datefmt='%Y-%m-%d %H:%M:%S'
|
19 |
)
|
20 |
logger = logging.getLogger("speech_api")
|
21 |
|
22 |
+
# Simple in-memory rate limiting
|
23 |
+
REQUEST_HISTORY = defaultdict(deque)
|
24 |
+
RATE_LIMIT_WINDOW = 60 # seconds
|
25 |
+
MAX_REQUESTS_PER_WINDOW = 15 # More conservative for HF
|
26 |
+
rate_limit_lock = threading.Lock()
|
27 |
+
|
28 |
+
# Small thread pool suitable for HF Spaces
|
29 |
+
MAX_WORKERS = 3 # Conservative number for HF Spaces
|
30 |
+
worker_pool = concurrent.futures.ThreadPoolExecutor(max_workers=MAX_WORKERS)
|
31 |
+
|
32 |
# Set all cache directories to locations within /tmp
|
33 |
cache_dirs = {
|
34 |
"HF_HOME": "/tmp/hf_home",
|
|
|
75 |
logger.critical(f"β Failed to import necessary libraries: {str(e)}")
|
76 |
sys.exit(1)
|
77 |
|
78 |
+
# Check CUDA availability and optimize memory usage
|
79 |
if torch.cuda.is_available():
|
80 |
logger.info(f"π CUDA available: {torch.cuda.get_device_name(0)}")
|
81 |
device = "cuda"
|
82 |
+
# Optimize CUDA memory usage for HF Spaces
|
83 |
+
torch.cuda.empty_cache()
|
84 |
+
# Conservative memory settings for HF Spaces
|
85 |
+
torch.cuda.set_per_process_memory_fraction(0.7) # Don't use all GPU memory
|
86 |
+
torch.backends.cudnn.benchmark = True # Speed up operations
|
87 |
else:
|
88 |
logger.info("β οΈ CUDA not available, using CPU")
|
89 |
device = "cpu"
|
|
|
92 |
SAMPLE_RATE = 16000
|
93 |
OUTPUT_DIR = "/tmp/audio_outputs"
|
94 |
REFERENCE_AUDIO_DIR = "./reference_audios"
|
95 |
+
MAX_CACHE_SIZE = 50 # Smaller cache for HF Spaces
|
96 |
+
|
97 |
+
# In-memory caches
|
98 |
+
asr_cache = {}
|
99 |
+
tts_cache = {}
|
100 |
+
translation_cache = {}
|
101 |
|
102 |
try:
|
103 |
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
|
|
105 |
except Exception as e:
|
106 |
logger.error(f"β Failed to create output directory: {str(e)}")
|
107 |
|
108 |
+
# Create user-specific directories to prevent conflicts
|
109 |
+
def get_user_output_dir(user_id=None):
|
110 |
+
"""Create and return a user-specific output directory"""
|
111 |
+
if user_id is None:
|
112 |
+
user_id = str(uuid.uuid4())[:8]
|
113 |
+
|
114 |
+
user_dir = os.path.join(OUTPUT_DIR, user_id)
|
115 |
+
os.makedirs(user_dir, exist_ok=True)
|
116 |
+
return user_dir
|
117 |
+
|
118 |
# Initialize Flask app
|
119 |
app = Flask(__name__)
|
120 |
CORS(app)
|
121 |
+
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024 # 16MB max upload for HF
|
122 |
|
123 |
# Load models
|
124 |
init_models(device)
|
125 |
|
126 |
+
# Rate limit decorator - simple in-memory implementation
|
127 |
+
def rate_limit(f):
|
128 |
+
def decorated_function(*args, **kwargs):
|
129 |
+
client_ip = request.remote_addr or request.headers.get('X-Forwarded-For', 'unknown')
|
130 |
+
|
131 |
+
with rate_limit_lock:
|
132 |
+
current_time = time.time()
|
133 |
+
|
134 |
+
# Add current request timestamp
|
135 |
+
if client_ip not in REQUEST_HISTORY:
|
136 |
+
REQUEST_HISTORY[client_ip] = deque(maxlen=MAX_REQUESTS_PER_WINDOW)
|
137 |
+
|
138 |
+
# Clean old requests (older than window)
|
139 |
+
while REQUEST_HISTORY[client_ip] and current_time - REQUEST_HISTORY[client_ip][0] > RATE_LIMIT_WINDOW:
|
140 |
+
REQUEST_HISTORY[client_ip].popleft()
|
141 |
+
|
142 |
+
# Check if rate limit is exceeded
|
143 |
+
if len(REQUEST_HISTORY[client_ip]) >= MAX_REQUESTS_PER_WINDOW:
|
144 |
+
logger.warning(f"β οΈ Rate limit exceeded for {client_ip}")
|
145 |
+
return jsonify({
|
146 |
+
"error": "Rate limit exceeded",
|
147 |
+
"message": "Too many requests, please try again later"
|
148 |
+
}), 429
|
149 |
+
|
150 |
+
# Add this request
|
151 |
+
REQUEST_HISTORY[client_ip].append(current_time)
|
152 |
+
|
153 |
+
return f(*args, **kwargs)
|
154 |
+
|
155 |
+
return decorated_function
|
156 |
+
|
157 |
+
# Caching helpers
|
158 |
+
def compute_hash(data):
|
159 |
+
"""Compute a hash for caching purposes"""
|
160 |
+
import hashlib
|
161 |
+
if isinstance(data, str):
|
162 |
+
return hashlib.md5(data.encode('utf-8')).hexdigest()
|
163 |
+
return hashlib.md5(str(data).encode('utf-8')).hexdigest()
|
164 |
+
|
165 |
+
# Cache decorator for responses
|
166 |
+
def cache_response(cache_dict, key_fn, max_size=MAX_CACHE_SIZE):
|
167 |
+
def decorator(f):
|
168 |
+
def wrapper(*args, **kwargs):
|
169 |
+
key = key_fn(*args, **kwargs)
|
170 |
+
|
171 |
+
# Check cache
|
172 |
+
if key in cache_dict:
|
173 |
+
logger.info(f"β
Cache hit for {f.__name__}")
|
174 |
+
return cache_dict[key]
|
175 |
+
|
176 |
+
# Get actual response
|
177 |
+
response = f(*args, **kwargs)
|
178 |
+
|
179 |
+
# Store in cache if it's a successful response
|
180 |
+
if isinstance(response, tuple):
|
181 |
+
result, status_code = response
|
182 |
+
if status_code < 400: # Only cache successful responses
|
183 |
+
cache_dict[key] = response
|
184 |
+
else:
|
185 |
+
cache_dict[key] = response
|
186 |
+
|
187 |
+
# Limit cache size
|
188 |
+
if len(cache_dict) > max_size:
|
189 |
+
# Remove random item (simple approach for HF Spaces)
|
190 |
+
cache_dict.pop(next(iter(cache_dict)))
|
191 |
+
|
192 |
+
return response
|
193 |
+
return wrapper
|
194 |
+
return decorator
|
195 |
+
|
196 |
+
# Request tracking middleware
|
197 |
+
@app.before_request
|
198 |
+
def before_request():
|
199 |
+
g.request_id = str(uuid.uuid4())[:8]
|
200 |
+
g.start_time = time.time()
|
201 |
+
|
202 |
+
# Initialize reference directory if needed
|
203 |
+
if not hasattr(g, 'initialized'):
|
204 |
+
global REFERENCE_AUDIO_DIR
|
205 |
+
# This might return an updated path if the original fails
|
206 |
+
updated_ref_dir = init_reference_audio(REFERENCE_AUDIO_DIR, OUTPUT_DIR)
|
207 |
+
if updated_ref_dir and updated_ref_dir != REFERENCE_AUDIO_DIR:
|
208 |
+
REFERENCE_AUDIO_DIR = updated_ref_dir
|
209 |
+
logger.info(f"π Updated reference audio directory to: {REFERENCE_AUDIO_DIR}")
|
210 |
+
g.initialized = True
|
211 |
+
|
212 |
+
# Create user-specific directory
|
213 |
+
user_id = request.headers.get('X-User-ID', str(uuid.uuid4())[:8])
|
214 |
+
g.user_output_dir = get_user_output_dir(user_id)
|
215 |
+
|
216 |
+
logger.info(f"[{g.request_id}] π {request.method} {request.path} started")
|
217 |
+
|
218 |
+
@app.after_request
|
219 |
+
def after_request(response):
|
220 |
+
if hasattr(g, 'request_id') and hasattr(g, 'start_time'):
|
221 |
+
duration = time.time() - g.start_time
|
222 |
+
logger.info(f"[{g.request_id}] β
Completed in {duration:.2f}s with status {response.status_code}")
|
223 |
+
|
224 |
+
# Set cache headers
|
225 |
+
if request.endpoint == 'download_audio':
|
226 |
+
response.headers['Cache-Control'] = 'public, max-age=86400' # Cache audio for a day
|
227 |
+
else:
|
228 |
+
response.headers['Cache-Control'] = 'no-store' # No caching for API responses
|
229 |
+
|
230 |
+
return response
|
231 |
+
|
232 |
+
# Global error handler
|
233 |
+
@app.errorhandler(Exception)
|
234 |
+
def handle_exception(e):
|
235 |
+
logger.error(f"β Unhandled exception: {str(e)}")
|
236 |
+
logger.debug(traceback.format_exc())
|
237 |
+
|
238 |
+
return jsonify({
|
239 |
+
"error": "Internal server error",
|
240 |
+
"message": str(e)
|
241 |
+
}), 500
|
242 |
|
243 |
# Define routes
|
244 |
@app.route("/", methods=["GET"])
|
245 |
def home():
|
246 |
+
return jsonify({
|
247 |
+
"message": "Speech API is running",
|
248 |
+
"status": "active",
|
249 |
+
"version": "1.1",
|
250 |
+
"environment": "Hugging Face Spaces"
|
251 |
+
})
|
252 |
|
253 |
@app.route("/health", methods=["GET"])
|
254 |
def health_check():
|
255 |
health_status = check_model_status()
|
256 |
health_status["api_status"] = "online"
|
257 |
health_status["device"] = device
|
258 |
+
|
259 |
+
# Add memory usage info
|
260 |
+
if torch.cuda.is_available():
|
261 |
+
health_status["memory"] = {
|
262 |
+
"cuda_allocated_mb": round(torch.cuda.memory_allocated() / (1024 * 1024), 2),
|
263 |
+
"cuda_reserved_mb": round(torch.cuda.memory_reserved() / (1024 * 1024), 2)
|
264 |
+
}
|
265 |
+
|
266 |
+
# Add cache stats
|
267 |
+
health_status["cache_stats"] = {
|
268 |
+
"asr_cache_size": len(asr_cache),
|
269 |
+
"tts_cache_size": len(tts_cache),
|
270 |
+
"translation_cache_size": len(translation_cache)
|
271 |
+
}
|
272 |
+
|
273 |
return jsonify(health_status)
|
274 |
|
275 |
+
# ASR with optimizations
|
276 |
@app.route("/asr", methods=["POST"])
|
277 |
+
@rate_limit
|
278 |
def transcribe_audio():
|
279 |
+
# Get user-specific output directory
|
280 |
+
user_output_dir = g.user_output_dir if hasattr(g, 'user_output_dir') else OUTPUT_DIR
|
281 |
+
|
282 |
+
# Check cache first (simple caching logic)
|
283 |
+
if 'audio' in request.files:
|
284 |
+
audio_file = request.files['audio']
|
285 |
+
language = request.form.get("language", "english").lower()
|
286 |
+
|
287 |
+
# Create a simple cache key
|
288 |
+
audio_content = audio_file.read()
|
289 |
+
audio_file.seek(0) # Reset file pointer
|
290 |
+
|
291 |
+
cache_key = f"asr_{compute_hash(audio_content)}_{language}"
|
292 |
+
|
293 |
+
if cache_key in asr_cache:
|
294 |
+
logger.info(f"[{g.request_id}] β
Using cached ASR result")
|
295 |
+
return asr_cache[cache_key]
|
296 |
+
|
297 |
+
# Process the request normally
|
298 |
+
result = handle_asr_request(request, user_output_dir, SAMPLE_RATE)
|
299 |
+
|
300 |
+
# Cache successful responses
|
301 |
+
if isinstance(result, tuple):
|
302 |
+
response, status_code = result
|
303 |
+
if status_code == 200:
|
304 |
+
asr_cache[cache_key] = result
|
305 |
+
|
306 |
+
# Limit cache size
|
307 |
+
if len(asr_cache) > MAX_CACHE_SIZE:
|
308 |
+
asr_cache.pop(next(iter(asr_cache)))
|
309 |
+
|
310 |
+
return result
|
311 |
|
312 |
@app.route("/tts", methods=["POST"])
|
313 |
+
@rate_limit
|
314 |
def generate_tts():
|
315 |
+
# Get user-specific output directory
|
316 |
+
user_output_dir = g.user_output_dir if hasattr(g, 'user_output_dir') else OUTPUT_DIR
|
317 |
+
|
318 |
+
# Check cache first
|
319 |
+
if request.is_json:
|
320 |
+
data = request.get_json()
|
321 |
+
if data:
|
322 |
+
text = data.get("text", "").strip()
|
323 |
+
language = data.get("language", "kapampangan").lower()
|
324 |
+
|
325 |
+
cache_key = f"tts_{compute_hash(text)}_{language}"
|
326 |
+
|
327 |
+
if cache_key in tts_cache:
|
328 |
+
logger.info(f"[{g.request_id}] β
Using cached TTS result")
|
329 |
+
return tts_cache[cache_key]
|
330 |
+
|
331 |
+
# Process the request normally
|
332 |
+
result = handle_tts_request(request, user_output_dir)
|
333 |
+
|
334 |
+
# Cache successful responses
|
335 |
+
if isinstance(result, tuple):
|
336 |
+
response, status_code = result
|
337 |
+
if status_code == 200 and request.is_json:
|
338 |
+
tts_cache[cache_key] = result
|
339 |
+
|
340 |
+
# Limit cache size
|
341 |
+
if len(tts_cache) > MAX_CACHE_SIZE:
|
342 |
+
tts_cache.pop(next(iter(tts_cache)))
|
343 |
+
|
344 |
+
return result
|
345 |
|
346 |
@app.route("/translate", methods=["POST"])
|
347 |
+
@rate_limit
|
348 |
def translate_text():
|
349 |
+
# Check cache first
|
350 |
+
if request.is_json:
|
351 |
+
data = request.get_json()
|
352 |
+
if data:
|
353 |
+
text = data.get("text", "").strip()
|
354 |
+
source_language = data.get("source_language", "").lower()
|
355 |
+
target_language = data.get("target_language", "").lower()
|
356 |
+
|
357 |
+
cache_key = f"translate_{compute_hash(text)}_{source_language}_{target_language}"
|
358 |
+
|
359 |
+
if cache_key in translation_cache:
|
360 |
+
logger.info(f"[{g.request_id}] β
Using cached translation result")
|
361 |
+
return translation_cache[cache_key]
|
362 |
+
|
363 |
+
# Process the request normally
|
364 |
+
result = handle_translation_request(request)
|
365 |
+
|
366 |
+
# Cache successful responses
|
367 |
+
if isinstance(result, tuple):
|
368 |
+
response, status_code = result
|
369 |
+
if status_code == 200 and request.is_json:
|
370 |
+
translation_cache[cache_key] = result
|
371 |
+
|
372 |
+
# Limit cache size
|
373 |
+
if len(translation_cache) > MAX_CACHE_SIZE:
|
374 |
+
translation_cache.pop(next(iter(translation_cache)))
|
375 |
+
|
376 |
+
return result
|
377 |
|
378 |
@app.route("/download/<filename>", methods=["GET"])
|
379 |
def download_audio(filename):
|
380 |
+
# First try user-specific directory if available
|
381 |
+
if hasattr(g, 'user_output_dir'):
|
382 |
+
file_path = os.path.join(g.user_output_dir, filename)
|
383 |
+
if os.path.exists(file_path):
|
384 |
+
logger.info(f"π€ Serving user audio file: {file_path}")
|
385 |
+
return send_file(file_path, mimetype="audio/wav", as_attachment=True)
|
386 |
+
|
387 |
+
# Then try main output directory
|
388 |
file_path = os.path.join(OUTPUT_DIR, filename)
|
389 |
if os.path.exists(file_path):
|
390 |
logger.info(f"π€ Serving audio file: {file_path}")
|
391 |
return send_file(file_path, mimetype="audio/wav", as_attachment=True)
|
392 |
+
|
393 |
+
# Check for any subdirectories (simplified approach)
|
394 |
+
for root, dirs, files in os.walk(OUTPUT_DIR):
|
395 |
+
if filename in files:
|
396 |
+
full_path = os.path.join(root, filename)
|
397 |
+
logger.info(f"π€ Serving found audio file: {full_path}")
|
398 |
+
return send_file(full_path, mimetype="audio/wav", as_attachment=True)
|
399 |
+
|
400 |
+
logger.warning(f"β οΈ Requested file not found: {filename}")
|
401 |
return jsonify({"error": "File not found"}), 404
|
402 |
|
|
|
403 |
@app.route("/evaluate", methods=["POST"])
|
404 |
+
@rate_limit
|
405 |
def evaluate_pronunciation():
|
406 |
+
# Get user-specific output directory
|
407 |
+
user_output_dir = g.user_output_dir if hasattr(g, 'user_output_dir') else OUTPUT_DIR
|
408 |
+
return handle_evaluation_request(request, REFERENCE_AUDIO_DIR, user_output_dir, SAMPLE_RATE)
|
409 |
|
410 |
@app.route("/check_references", methods=["GET"])
|
411 |
def check_references():
|
412 |
+
"""Optimized endpoint to check if reference files exist"""
|
413 |
ref_patterns = ["mayap_a_abak", "mayap_a_ugtu", "mayap_a_gatpanapun", "mayap_a_bengi",
|
414 |
"komusta_ka", "malaus_ko_pu", "malaus_kayu", "agaganaka_da_ka",
|
415 |
"pagdulapan_da_ka", "kaluguran_da_ka", "dakal_a_salamat", "panapaya_mu_ku",
|
|
|
424 |
"pisan", "dara", "achi", "apu", "ima", "tatang", "pengari", "koya", "kapatad", "wali",
|
425 |
"pasbul", "awang", "dagis", "bale", "ulas", "sambra", "sulu", "pitudturan", "luklukan", "ulnan"
|
426 |
]
|
427 |
+
|
428 |
+
# Get a summary instead of details to reduce response size
|
429 |
+
summary = {
|
430 |
+
"reference_audio_dir": REFERENCE_AUDIO_DIR,
|
431 |
+
"directory_exists": os.path.exists(REFERENCE_AUDIO_DIR),
|
432 |
+
"total_patterns": len(ref_patterns),
|
433 |
+
"existing_patterns": 0,
|
434 |
+
"total_files": 0
|
435 |
+
}
|
436 |
+
|
437 |
+
for pattern in ref_patterns:
|
438 |
+
pattern_dir = os.path.join(REFERENCE_AUDIO_DIR, pattern)
|
439 |
+
if os.path.exists(pattern_dir):
|
440 |
+
wav_files = glob.glob(os.path.join(pattern_dir, "*.wav"))
|
441 |
+
if wav_files:
|
442 |
+
summary["existing_patterns"] += 1
|
443 |
+
summary["total_files"] += len(wav_files)
|
444 |
+
|
445 |
+
return jsonify(summary)
|
446 |
|
447 |
+
# Add detailed reference check as a separate endpoint
|
448 |
+
@app.route("/check_references/detailed", methods=["GET"])
|
449 |
+
def check_references_detailed():
|
450 |
+
"""Get detailed information for specific reference patterns"""
|
451 |
+
patterns = request.args.get('patterns', '').split(',')
|
452 |
+
|
453 |
+
# If no patterns specified, return the first 10 (avoid heavy response)
|
454 |
+
if not patterns or patterns == ['']:
|
455 |
+
ref_patterns = ["mayap_a_abak", "mayap_a_ugtu", "mayap_a_gatpanapun", "mayap_a_bengi",
|
456 |
+
"komusta_ka", "malaus_ko_pu", "malaus_kayu", "agaganaka_da_ka",
|
457 |
+
"pagdulapan_da_ka", "kaluguran_da_ka"]
|
458 |
+
else:
|
459 |
+
ref_patterns = [p.strip() for p in patterns if p.strip()]
|
460 |
+
|
461 |
+
results = {}
|
462 |
for pattern in ref_patterns:
|
463 |
pattern_dir = os.path.join(REFERENCE_AUDIO_DIR, pattern)
|
464 |
if os.path.exists(pattern_dir):
|
|
|
477 |
|
478 |
return jsonify({
|
479 |
"reference_audio_dir": REFERENCE_AUDIO_DIR,
|
|
|
480 |
"patterns": results
|
481 |
})
|
482 |
|
|
|
483 |
@app.route("/upload_reference", methods=["POST"])
|
484 |
+
@rate_limit
|
485 |
def upload_reference_audio():
|
486 |
return handle_upload_reference(request, REFERENCE_AUDIO_DIR, SAMPLE_RATE)
|
487 |
|
488 |
+
# Add a cleanup endpoint
|
489 |
+
@app.route("/cleanup", methods=["POST"])
|
490 |
+
def cleanup_files():
|
491 |
+
"""Clean up old files to free space (important for HF Spaces)"""
|
492 |
+
try:
|
493 |
+
# Only allow from local or with API key
|
494 |
+
if not (request.remote_addr == '127.0.0.1' or
|
495 |
+
request.headers.get('X-Cleanup-Key') == os.environ.get('CLEANUP_KEY', 'cleanup-secret')):
|
496 |
+
return jsonify({"error": "Unauthorized"}), 403
|
497 |
+
|
498 |
+
# Delete files older than 2 hours
|
499 |
+
cutoff_time = time.time() - 7200 # 2 hours in seconds
|
500 |
+
deleted_count = 0
|
501 |
+
|
502 |
+
for root, dirs, files in os.walk(OUTPUT_DIR):
|
503 |
+
for file in files:
|
504 |
+
try:
|
505 |
+
file_path = os.path.join(root, file)
|
506 |
+
if os.path.getmtime(file_path) < cutoff_time:
|
507 |
+
os.remove(file_path)
|
508 |
+
deleted_count += 1
|
509 |
+
except Exception as e:
|
510 |
+
logger.warning(f"β οΈ Failed to delete {file}: {e}")
|
511 |
+
|
512 |
+
# Clear empty directories
|
513 |
+
for root, dirs, files in os.walk(OUTPUT_DIR, topdown=False):
|
514 |
+
for dir_name in dirs:
|
515 |
+
try:
|
516 |
+
dir_path = os.path.join(root, dir_name)
|
517 |
+
if not os.listdir(dir_path):
|
518 |
+
os.rmdir(dir_path)
|
519 |
+
except Exception as e:
|
520 |
+
logger.warning(f"β οΈ Failed to remove empty dir {dir_name}: {e}")
|
521 |
+
|
522 |
+
# Clear torch cache
|
523 |
+
if torch.cuda.is_available():
|
524 |
+
torch.cuda.empty_cache()
|
525 |
+
|
526 |
+
return jsonify({
|
527 |
+
"message": "Cleanup completed",
|
528 |
+
"files_deleted": deleted_count
|
529 |
+
})
|
530 |
+
except Exception as e:
|
531 |
+
logger.error(f"β Cleanup error: {str(e)}")
|
532 |
+
return jsonify({"error": str(e)}), 500
|
533 |
|
534 |
if __name__ == "__main__":
|
|
|
535 |
# This might return an updated path if the original fails
|
536 |
updated_ref_dir = init_reference_audio(REFERENCE_AUDIO_DIR, OUTPUT_DIR)
|
537 |
if updated_ref_dir and updated_ref_dir != REFERENCE_AUDIO_DIR:
|
538 |
REFERENCE_AUDIO_DIR = updated_ref_dir
|
539 |
logger.info(f"π Updated reference audio directory to: {REFERENCE_AUDIO_DIR}")
|
540 |
|
541 |
+
logger.info("π Starting Speech API server optimized for Hugging Face Spaces")
|
542 |
|
543 |
# Get the status for logging
|
544 |
status = check_model_status()
|
|
|
546 |
for lang, model_status in status['tts_models'].items():
|
547 |
logger.info(f"π TTS model {lang}: {'β
' if model_status == 'loaded' else 'β'}")
|
548 |
|
549 |
+
# Use threaded=True for better performance
|
550 |
+
app.run(host="0.0.0.0", port=7860, debug=False, threaded=True)
|