Spaces:
Paused
Paused
import os | |
from pathlib import Path | |
from typing import Tuple, Union | |
import torchaudio | |
from torch import Tensor | |
from torch.utils.data import Dataset | |
from torchaudio._internal import download_url_to_file | |
from torchaudio.datasets.utils import _extract_tar | |
_RELEASE_CONFIGS = { | |
"release1": { | |
"folder_in_archive": "TEDLIUM_release1", | |
"url": "http://www.openslr.org/resources/7/TEDLIUM_release1.tar.gz", | |
"checksum": "30301975fd8c5cac4040c261c0852f57cfa8adbbad2ce78e77e4986957445f27", | |
"data_path": "", | |
"subset": "train", | |
"supported_subsets": ["train", "test", "dev"], | |
"dict": "TEDLIUM.150K.dic", | |
}, | |
"release2": { | |
"folder_in_archive": "TEDLIUM_release2", | |
"url": "http://www.openslr.org/resources/19/TEDLIUM_release2.tar.gz", | |
"checksum": "93281b5fcaaae5c88671c9d000b443cb3c7ea3499ad12010b3934ca41a7b9c58", | |
"data_path": "", | |
"subset": "train", | |
"supported_subsets": ["train", "test", "dev"], | |
"dict": "TEDLIUM.152k.dic", | |
}, | |
"release3": { | |
"folder_in_archive": "TEDLIUM_release-3", | |
"url": "http://www.openslr.org/resources/51/TEDLIUM_release-3.tgz", | |
"checksum": "ad1e454d14d1ad550bc2564c462d87c7a7ec83d4dc2b9210f22ab4973b9eccdb", | |
"data_path": "data/", | |
"subset": "train", | |
"supported_subsets": ["train", "test", "dev"], | |
"dict": "TEDLIUM.152k.dic", | |
}, | |
} | |
class TEDLIUM(Dataset): | |
"""*Tedlium* :cite:`rousseau2012tedlium` dataset (releases 1,2 and 3). | |
Args: | |
root (str or Path): Path to the directory where the dataset is found or downloaded. | |
release (str, optional): Release version. | |
Allowed values are ``"release1"``, ``"release2"`` or ``"release3"``. | |
(default: ``"release1"``). | |
subset (str, optional): The subset of dataset to use. Valid options are ``"train"``, ``"dev"``, | |
and ``"test"``. Defaults to ``"train"``. | |
download (bool, optional): | |
Whether to download the dataset if it is not found at root path. (default: ``False``). | |
audio_ext (str, optional): extension for audio file (default: ``".sph"``) | |
""" | |
def __init__( | |
self, | |
root: Union[str, Path], | |
release: str = "release1", | |
subset: str = "train", | |
download: bool = False, | |
audio_ext: str = ".sph", | |
) -> None: | |
self._ext_audio = audio_ext | |
if release in _RELEASE_CONFIGS.keys(): | |
folder_in_archive = _RELEASE_CONFIGS[release]["folder_in_archive"] | |
url = _RELEASE_CONFIGS[release]["url"] | |
subset = subset if subset else _RELEASE_CONFIGS[release]["subset"] | |
else: | |
# Raise warning | |
raise RuntimeError( | |
"The release {} does not match any of the supported tedlium releases{} ".format( | |
release, | |
_RELEASE_CONFIGS.keys(), | |
) | |
) | |
if subset not in _RELEASE_CONFIGS[release]["supported_subsets"]: | |
# Raise warning | |
raise RuntimeError( | |
"The subset {} does not match any of the supported tedlium subsets{} ".format( | |
subset, | |
_RELEASE_CONFIGS[release]["supported_subsets"], | |
) | |
) | |
# Get string representation of 'root' in case Path object is passed | |
root = os.fspath(root) | |
basename = os.path.basename(url) | |
archive = os.path.join(root, basename) | |
basename = basename.split(".")[0] | |
if release == "release3": | |
if subset == "train": | |
self._path = os.path.join(root, folder_in_archive, _RELEASE_CONFIGS[release]["data_path"]) | |
else: | |
self._path = os.path.join(root, folder_in_archive, "legacy", subset) | |
else: | |
self._path = os.path.join(root, folder_in_archive, _RELEASE_CONFIGS[release]["data_path"], subset) | |
if download: | |
if not os.path.isdir(self._path): | |
if not os.path.isfile(archive): | |
checksum = _RELEASE_CONFIGS[release]["checksum"] | |
download_url_to_file(url, archive, hash_prefix=checksum) | |
_extract_tar(archive) | |
else: | |
if not os.path.exists(self._path): | |
raise RuntimeError( | |
f"The path {self._path} doesn't exist. " | |
"Please check the ``root`` path or set `download=True` to download it" | |
) | |
# Create list for all samples | |
self._filelist = [] | |
stm_path = os.path.join(self._path, "stm") | |
for file in sorted(os.listdir(stm_path)): | |
if file.endswith(".stm"): | |
stm_path = os.path.join(self._path, "stm", file) | |
with open(stm_path) as f: | |
l = len(f.readlines()) | |
file = file.replace(".stm", "") | |
self._filelist.extend((file, line) for line in range(l)) | |
# Create dict path for later read | |
self._dict_path = os.path.join(root, folder_in_archive, _RELEASE_CONFIGS[release]["dict"]) | |
self._phoneme_dict = None | |
def _load_tedlium_item(self, fileid: str, line: int, path: str) -> Tuple[Tensor, int, str, int, int, int]: | |
"""Loads a TEDLIUM dataset sample given a file name and corresponding sentence name. | |
Args: | |
fileid (str): File id to identify both text and audio files corresponding to the sample | |
line (int): Line identifier for the sample inside the text file | |
path (str): Dataset root path | |
Returns: | |
(Tensor, int, str, int, int, int): | |
``(waveform, sample_rate, transcript, talk_id, speaker_id, identifier)`` | |
""" | |
transcript_path = os.path.join(path, "stm", fileid) | |
with open(transcript_path + ".stm") as f: | |
transcript = f.readlines()[line] | |
talk_id, _, speaker_id, start_time, end_time, identifier, transcript = transcript.split(" ", 6) | |
wave_path = os.path.join(path, "sph", fileid) | |
waveform, sample_rate = self._load_audio(wave_path + self._ext_audio, start_time=start_time, end_time=end_time) | |
return (waveform, sample_rate, transcript, talk_id, speaker_id, identifier) | |
def _load_audio(self, path: str, start_time: float, end_time: float, sample_rate: int = 16000) -> [Tensor, int]: | |
"""Default load function used in TEDLIUM dataset, you can overwrite this function to customize functionality | |
and load individual sentences from a full ted audio talk file. | |
Args: | |
path (str): Path to audio file | |
start_time (int): Time in seconds where the sample sentence stars | |
end_time (int): Time in seconds where the sample sentence finishes | |
sample_rate (float, optional): Sampling rate | |
Returns: | |
[Tensor, int]: Audio tensor representation and sample rate | |
""" | |
start_time = int(float(start_time) * sample_rate) | |
end_time = int(float(end_time) * sample_rate) | |
kwargs = {"frame_offset": start_time, "num_frames": end_time - start_time} | |
return torchaudio.load(path, **kwargs) | |
def __getitem__(self, n: int) -> Tuple[Tensor, int, str, int, int, int]: | |
"""Load the n-th sample from the dataset. | |
Args: | |
n (int): The index of the sample to be loaded | |
Returns: | |
Tuple of the following items; | |
Tensor: | |
Waveform | |
int: | |
Sample rate | |
str: | |
Transcript | |
int: | |
Talk ID | |
int: | |
Speaker ID | |
int: | |
Identifier | |
""" | |
fileid, line = self._filelist[n] | |
return self._load_tedlium_item(fileid, line, self._path) | |
def __len__(self) -> int: | |
"""TEDLIUM dataset custom function overwritting len default behaviour. | |
Returns: | |
int: TEDLIUM dataset length | |
""" | |
return len(self._filelist) | |
def phoneme_dict(self): | |
"""dict[str, tuple[str]]: Phonemes. Mapping from word to tuple of phonemes. | |
Note that some words have empty phonemes. | |
""" | |
# Read phoneme dictionary | |
if not self._phoneme_dict: | |
self._phoneme_dict = {} | |
with open(self._dict_path, "r", encoding="utf-8") as f: | |
for line in f.readlines(): | |
content = line.strip().split() | |
self._phoneme_dict[content[0]] = tuple(content[1:]) # content[1:] can be empty list | |
return self._phoneme_dict.copy() | |