Spaces:
Paused
Paused
File size: 8,916 Bytes
864affd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import os
from pathlib import Path
from typing import Tuple, Union
import torchaudio
from torch import Tensor
from torch.utils.data import Dataset
from torchaudio._internal import download_url_to_file
from torchaudio.datasets.utils import _extract_tar
_RELEASE_CONFIGS = {
"release1": {
"folder_in_archive": "TEDLIUM_release1",
"url": "http://www.openslr.org/resources/7/TEDLIUM_release1.tar.gz",
"checksum": "30301975fd8c5cac4040c261c0852f57cfa8adbbad2ce78e77e4986957445f27",
"data_path": "",
"subset": "train",
"supported_subsets": ["train", "test", "dev"],
"dict": "TEDLIUM.150K.dic",
},
"release2": {
"folder_in_archive": "TEDLIUM_release2",
"url": "http://www.openslr.org/resources/19/TEDLIUM_release2.tar.gz",
"checksum": "93281b5fcaaae5c88671c9d000b443cb3c7ea3499ad12010b3934ca41a7b9c58",
"data_path": "",
"subset": "train",
"supported_subsets": ["train", "test", "dev"],
"dict": "TEDLIUM.152k.dic",
},
"release3": {
"folder_in_archive": "TEDLIUM_release-3",
"url": "http://www.openslr.org/resources/51/TEDLIUM_release-3.tgz",
"checksum": "ad1e454d14d1ad550bc2564c462d87c7a7ec83d4dc2b9210f22ab4973b9eccdb",
"data_path": "data/",
"subset": "train",
"supported_subsets": ["train", "test", "dev"],
"dict": "TEDLIUM.152k.dic",
},
}
class TEDLIUM(Dataset):
"""*Tedlium* :cite:`rousseau2012tedlium` dataset (releases 1,2 and 3).
Args:
root (str or Path): Path to the directory where the dataset is found or downloaded.
release (str, optional): Release version.
Allowed values are ``"release1"``, ``"release2"`` or ``"release3"``.
(default: ``"release1"``).
subset (str, optional): The subset of dataset to use. Valid options are ``"train"``, ``"dev"``,
and ``"test"``. Defaults to ``"train"``.
download (bool, optional):
Whether to download the dataset if it is not found at root path. (default: ``False``).
audio_ext (str, optional): extension for audio file (default: ``".sph"``)
"""
def __init__(
self,
root: Union[str, Path],
release: str = "release1",
subset: str = "train",
download: bool = False,
audio_ext: str = ".sph",
) -> None:
self._ext_audio = audio_ext
if release in _RELEASE_CONFIGS.keys():
folder_in_archive = _RELEASE_CONFIGS[release]["folder_in_archive"]
url = _RELEASE_CONFIGS[release]["url"]
subset = subset if subset else _RELEASE_CONFIGS[release]["subset"]
else:
# Raise warning
raise RuntimeError(
"The release {} does not match any of the supported tedlium releases{} ".format(
release,
_RELEASE_CONFIGS.keys(),
)
)
if subset not in _RELEASE_CONFIGS[release]["supported_subsets"]:
# Raise warning
raise RuntimeError(
"The subset {} does not match any of the supported tedlium subsets{} ".format(
subset,
_RELEASE_CONFIGS[release]["supported_subsets"],
)
)
# Get string representation of 'root' in case Path object is passed
root = os.fspath(root)
basename = os.path.basename(url)
archive = os.path.join(root, basename)
basename = basename.split(".")[0]
if release == "release3":
if subset == "train":
self._path = os.path.join(root, folder_in_archive, _RELEASE_CONFIGS[release]["data_path"])
else:
self._path = os.path.join(root, folder_in_archive, "legacy", subset)
else:
self._path = os.path.join(root, folder_in_archive, _RELEASE_CONFIGS[release]["data_path"], subset)
if download:
if not os.path.isdir(self._path):
if not os.path.isfile(archive):
checksum = _RELEASE_CONFIGS[release]["checksum"]
download_url_to_file(url, archive, hash_prefix=checksum)
_extract_tar(archive)
else:
if not os.path.exists(self._path):
raise RuntimeError(
f"The path {self._path} doesn't exist. "
"Please check the ``root`` path or set `download=True` to download it"
)
# Create list for all samples
self._filelist = []
stm_path = os.path.join(self._path, "stm")
for file in sorted(os.listdir(stm_path)):
if file.endswith(".stm"):
stm_path = os.path.join(self._path, "stm", file)
with open(stm_path) as f:
l = len(f.readlines())
file = file.replace(".stm", "")
self._filelist.extend((file, line) for line in range(l))
# Create dict path for later read
self._dict_path = os.path.join(root, folder_in_archive, _RELEASE_CONFIGS[release]["dict"])
self._phoneme_dict = None
def _load_tedlium_item(self, fileid: str, line: int, path: str) -> Tuple[Tensor, int, str, int, int, int]:
"""Loads a TEDLIUM dataset sample given a file name and corresponding sentence name.
Args:
fileid (str): File id to identify both text and audio files corresponding to the sample
line (int): Line identifier for the sample inside the text file
path (str): Dataset root path
Returns:
(Tensor, int, str, int, int, int):
``(waveform, sample_rate, transcript, talk_id, speaker_id, identifier)``
"""
transcript_path = os.path.join(path, "stm", fileid)
with open(transcript_path + ".stm") as f:
transcript = f.readlines()[line]
talk_id, _, speaker_id, start_time, end_time, identifier, transcript = transcript.split(" ", 6)
wave_path = os.path.join(path, "sph", fileid)
waveform, sample_rate = self._load_audio(wave_path + self._ext_audio, start_time=start_time, end_time=end_time)
return (waveform, sample_rate, transcript, talk_id, speaker_id, identifier)
def _load_audio(self, path: str, start_time: float, end_time: float, sample_rate: int = 16000) -> [Tensor, int]:
"""Default load function used in TEDLIUM dataset, you can overwrite this function to customize functionality
and load individual sentences from a full ted audio talk file.
Args:
path (str): Path to audio file
start_time (int): Time in seconds where the sample sentence stars
end_time (int): Time in seconds where the sample sentence finishes
sample_rate (float, optional): Sampling rate
Returns:
[Tensor, int]: Audio tensor representation and sample rate
"""
start_time = int(float(start_time) * sample_rate)
end_time = int(float(end_time) * sample_rate)
kwargs = {"frame_offset": start_time, "num_frames": end_time - start_time}
return torchaudio.load(path, **kwargs)
def __getitem__(self, n: int) -> Tuple[Tensor, int, str, int, int, int]:
"""Load the n-th sample from the dataset.
Args:
n (int): The index of the sample to be loaded
Returns:
Tuple of the following items;
Tensor:
Waveform
int:
Sample rate
str:
Transcript
int:
Talk ID
int:
Speaker ID
int:
Identifier
"""
fileid, line = self._filelist[n]
return self._load_tedlium_item(fileid, line, self._path)
def __len__(self) -> int:
"""TEDLIUM dataset custom function overwritting len default behaviour.
Returns:
int: TEDLIUM dataset length
"""
return len(self._filelist)
@property
def phoneme_dict(self):
"""dict[str, tuple[str]]: Phonemes. Mapping from word to tuple of phonemes.
Note that some words have empty phonemes.
"""
# Read phoneme dictionary
if not self._phoneme_dict:
self._phoneme_dict = {}
with open(self._dict_path, "r", encoding="utf-8") as f:
for line in f.readlines():
content = line.strip().split()
self._phoneme_dict[content[0]] = tuple(content[1:]) # content[1:] can be empty list
return self._phoneme_dict.copy()
|