Spaces:
Paused
Paused
import os | |
from pathlib import Path | |
from typing import List, Tuple, Union | |
from torch import Tensor | |
from torch.utils.data import Dataset | |
from torchaudio._internal import download_url_to_file | |
from torchaudio.datasets.utils import _extract_tar, _load_waveform | |
URL = "train-clean-100" | |
FOLDER_IN_ARCHIVE = "LibriSpeech" | |
SAMPLE_RATE = 16000 | |
_DATA_SUBSETS = [ | |
"dev-clean", | |
"dev-other", | |
"test-clean", | |
"test-other", | |
"train-clean-100", | |
"train-clean-360", | |
"train-other-500", | |
] | |
_CHECKSUMS = { | |
"http://www.openslr.org/resources/12/dev-clean.tar.gz": "76f87d090650617fca0cac8f88b9416e0ebf80350acb97b343a85fa903728ab3", # noqa: E501 | |
"http://www.openslr.org/resources/12/dev-other.tar.gz": "12661c48e8c3fe1de2c1caa4c3e135193bfb1811584f11f569dd12645aa84365", # noqa: E501 | |
"http://www.openslr.org/resources/12/test-clean.tar.gz": "39fde525e59672dc6d1551919b1478f724438a95aa55f874b576be21967e6c23", # noqa: E501 | |
"http://www.openslr.org/resources/12/test-other.tar.gz": "d09c181bba5cf717b3dee7d4d592af11a3ee3a09e08ae025c5506f6ebe961c29", # noqa: E501 | |
"http://www.openslr.org/resources/12/train-clean-100.tar.gz": "d4ddd1d5a6ab303066f14971d768ee43278a5f2a0aa43dc716b0e64ecbbbf6e2", # noqa: E501 | |
"http://www.openslr.org/resources/12/train-clean-360.tar.gz": "146a56496217e96c14334a160df97fffedd6e0a04e66b9c5af0d40be3c792ecf", # noqa: E501 | |
"http://www.openslr.org/resources/12/train-other-500.tar.gz": "ddb22f27f96ec163645d53215559df6aa36515f26e01dd70798188350adcb6d2", # noqa: E501 | |
} | |
def _download_librispeech(root, url): | |
base_url = "http://www.openslr.org/resources/12/" | |
ext_archive = ".tar.gz" | |
filename = url + ext_archive | |
archive = os.path.join(root, filename) | |
download_url = os.path.join(base_url, filename) | |
if not os.path.isfile(archive): | |
checksum = _CHECKSUMS.get(download_url, None) | |
download_url_to_file(download_url, archive, hash_prefix=checksum) | |
_extract_tar(archive) | |
def _get_librispeech_metadata( | |
fileid: str, root: str, folder: str, ext_audio: str, ext_txt: str, blist: List[str] | |
) -> Tuple[str, int, str, int, int, int]: | |
blist = blist or [] | |
speaker_id, chapter_id, utterance_id = fileid.split("-") | |
# Get audio path and sample rate | |
fileid_audio = f"{speaker_id}-{chapter_id}-{utterance_id}" | |
filepath = os.path.join(folder, speaker_id, chapter_id, f"{fileid_audio}{ext_audio}") | |
# Load text | |
file_text = f"{speaker_id}-{chapter_id}{ext_txt}" | |
file_text = os.path.join(root, folder, speaker_id, chapter_id, file_text) | |
uttblist = [] | |
with open(file_text) as ft: | |
for line in ft: | |
fileid_text, transcript = line.strip().split(" ", 1) | |
if fileid_audio == fileid_text: | |
# get utterance biasing list | |
for word in transcript.split(): | |
if word in blist and word not in uttblist: | |
uttblist.append(word) | |
break | |
else: | |
# Translation not found | |
raise FileNotFoundError(f"Translation not found for {fileid_audio}") | |
return ( | |
filepath, | |
SAMPLE_RATE, | |
transcript, | |
int(speaker_id), | |
int(chapter_id), | |
int(utterance_id), | |
uttblist, | |
) | |
class LibriSpeechBiasing(Dataset): | |
"""*LibriSpeech* :cite:`7178964` dataset with prefix-tree construction and biasing support. | |
Args: | |
root (str or Path): Path to the directory where the dataset is found or downloaded. | |
url (str, optional): The URL to download the dataset from, | |
or the type of the dataset to dowload. | |
Allowed type values are ``"dev-clean"``, ``"dev-other"``, ``"test-clean"``, | |
``"test-other"``, ``"train-clean-100"``, ``"train-clean-360"`` and | |
``"train-other-500"``. (default: ``"train-clean-100"``) | |
folder_in_archive (str, optional): | |
The top-level directory of the dataset. (default: ``"LibriSpeech"``) | |
download (bool, optional): | |
Whether to download the dataset if it is not found at root path. (default: ``False``). | |
blist (list, optional): | |
The list of biasing words (default: ``[]``). | |
""" | |
_ext_txt = ".trans.txt" | |
_ext_audio = ".flac" | |
def __init__( | |
self, | |
root: Union[str, Path], | |
url: str = URL, | |
folder_in_archive: str = FOLDER_IN_ARCHIVE, | |
download: bool = False, | |
blist: List[str] = None, | |
) -> None: | |
self._url = url | |
if url not in _DATA_SUBSETS: | |
raise ValueError(f"Invalid url '{url}' given; please provide one of {_DATA_SUBSETS}.") | |
root = os.fspath(root) | |
self._archive = os.path.join(root, folder_in_archive) | |
self._path = os.path.join(root, folder_in_archive, url) | |
if not os.path.isdir(self._path): | |
if download: | |
_download_librispeech(root, url) | |
else: | |
raise RuntimeError( | |
f"Dataset not found at {self._path}. Please set `download=True` to download the dataset." | |
) | |
self._walker = sorted(str(p.stem) for p in Path(self._path).glob("*/*/*" + self._ext_audio)) | |
self.blist = blist | |
def get_metadata(self, n: int) -> Tuple[str, int, str, int, int, int]: | |
"""Get metadata for the n-th sample from the dataset. Returns filepath instead of waveform, | |
but otherwise returns the same fields as :py:func:`__getitem__`. | |
Args: | |
n (int): The index of the sample to be loaded | |
Returns: | |
Tuple of the following items; | |
str: | |
Path to audio | |
int: | |
Sample rate | |
str: | |
Transcript | |
int: | |
Speaker ID | |
int: | |
Chapter ID | |
int: | |
Utterance ID | |
list: | |
List of biasing words in the utterance | |
""" | |
fileid = self._walker[n] | |
return _get_librispeech_metadata(fileid, self._archive, self._url, self._ext_audio, self._ext_txt, self.blist) | |
def __getitem__(self, n: int) -> Tuple[Tensor, int, str, int, int, int]: | |
"""Load the n-th sample from the dataset. | |
Args: | |
n (int): The index of the sample to be loaded | |
Returns: | |
Tuple of the following items; | |
Tensor: | |
Waveform | |
int: | |
Sample rate | |
str: | |
Transcript | |
int: | |
Speaker ID | |
int: | |
Chapter ID | |
int: | |
Utterance ID | |
list: | |
List of biasing words in the utterance | |
""" | |
metadata = self.get_metadata(n) | |
waveform = _load_waveform(self._archive, metadata[0], metadata[1]) | |
return (waveform,) + metadata[1:] | |
def __len__(self) -> int: | |
return len(self._walker) | |