File size: 7,147 Bytes
864affd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os
from pathlib import Path
from typing import List, Tuple, Union

from torch import Tensor
from torch.utils.data import Dataset
from torchaudio._internal import download_url_to_file
from torchaudio.datasets.utils import _extract_tar, _load_waveform

URL = "train-clean-100"
FOLDER_IN_ARCHIVE = "LibriSpeech"
SAMPLE_RATE = 16000
_DATA_SUBSETS = [
    "dev-clean",
    "dev-other",
    "test-clean",
    "test-other",
    "train-clean-100",
    "train-clean-360",
    "train-other-500",
]
_CHECKSUMS = {
    "http://www.openslr.org/resources/12/dev-clean.tar.gz": "76f87d090650617fca0cac8f88b9416e0ebf80350acb97b343a85fa903728ab3",  # noqa: E501
    "http://www.openslr.org/resources/12/dev-other.tar.gz": "12661c48e8c3fe1de2c1caa4c3e135193bfb1811584f11f569dd12645aa84365",  # noqa: E501
    "http://www.openslr.org/resources/12/test-clean.tar.gz": "39fde525e59672dc6d1551919b1478f724438a95aa55f874b576be21967e6c23",  # noqa: E501
    "http://www.openslr.org/resources/12/test-other.tar.gz": "d09c181bba5cf717b3dee7d4d592af11a3ee3a09e08ae025c5506f6ebe961c29",  # noqa: E501
    "http://www.openslr.org/resources/12/train-clean-100.tar.gz": "d4ddd1d5a6ab303066f14971d768ee43278a5f2a0aa43dc716b0e64ecbbbf6e2",  # noqa: E501
    "http://www.openslr.org/resources/12/train-clean-360.tar.gz": "146a56496217e96c14334a160df97fffedd6e0a04e66b9c5af0d40be3c792ecf",  # noqa: E501
    "http://www.openslr.org/resources/12/train-other-500.tar.gz": "ddb22f27f96ec163645d53215559df6aa36515f26e01dd70798188350adcb6d2",  # noqa: E501
}


def _download_librispeech(root, url):
    base_url = "http://www.openslr.org/resources/12/"
    ext_archive = ".tar.gz"

    filename = url + ext_archive
    archive = os.path.join(root, filename)
    download_url = os.path.join(base_url, filename)
    if not os.path.isfile(archive):
        checksum = _CHECKSUMS.get(download_url, None)
        download_url_to_file(download_url, archive, hash_prefix=checksum)
    _extract_tar(archive)


def _get_librispeech_metadata(

    fileid: str, root: str, folder: str, ext_audio: str, ext_txt: str, blist: List[str]

) -> Tuple[str, int, str, int, int, int]:
    blist = blist or []
    speaker_id, chapter_id, utterance_id = fileid.split("-")

    # Get audio path and sample rate
    fileid_audio = f"{speaker_id}-{chapter_id}-{utterance_id}"
    filepath = os.path.join(folder, speaker_id, chapter_id, f"{fileid_audio}{ext_audio}")

    # Load text
    file_text = f"{speaker_id}-{chapter_id}{ext_txt}"
    file_text = os.path.join(root, folder, speaker_id, chapter_id, file_text)
    uttblist = []
    with open(file_text) as ft:
        for line in ft:
            fileid_text, transcript = line.strip().split(" ", 1)
            if fileid_audio == fileid_text:
                # get utterance biasing list
                for word in transcript.split():
                    if word in blist and word not in uttblist:
                        uttblist.append(word)
                break
        else:
            # Translation not found
            raise FileNotFoundError(f"Translation not found for {fileid_audio}")

    return (
        filepath,
        SAMPLE_RATE,
        transcript,
        int(speaker_id),
        int(chapter_id),
        int(utterance_id),
        uttblist,
    )


class LibriSpeechBiasing(Dataset):
    """*LibriSpeech* :cite:`7178964` dataset with prefix-tree construction and biasing support.



    Args:

        root (str or Path): Path to the directory where the dataset is found or downloaded.

        url (str, optional): The URL to download the dataset from,

            or the type of the dataset to dowload.

            Allowed type values are ``"dev-clean"``, ``"dev-other"``, ``"test-clean"``,

            ``"test-other"``, ``"train-clean-100"``, ``"train-clean-360"`` and

            ``"train-other-500"``. (default: ``"train-clean-100"``)

        folder_in_archive (str, optional):

            The top-level directory of the dataset. (default: ``"LibriSpeech"``)

        download (bool, optional):

            Whether to download the dataset if it is not found at root path. (default: ``False``).

        blist (list, optional):

            The list of biasing words (default: ``[]``).

    """

    _ext_txt = ".trans.txt"
    _ext_audio = ".flac"

    def __init__(

        self,

        root: Union[str, Path],

        url: str = URL,

        folder_in_archive: str = FOLDER_IN_ARCHIVE,

        download: bool = False,

        blist: List[str] = None,

    ) -> None:
        self._url = url
        if url not in _DATA_SUBSETS:
            raise ValueError(f"Invalid url '{url}' given; please provide one of {_DATA_SUBSETS}.")

        root = os.fspath(root)
        self._archive = os.path.join(root, folder_in_archive)
        self._path = os.path.join(root, folder_in_archive, url)

        if not os.path.isdir(self._path):
            if download:
                _download_librispeech(root, url)
            else:
                raise RuntimeError(
                    f"Dataset not found at {self._path}. Please set `download=True` to download the dataset."
                )

        self._walker = sorted(str(p.stem) for p in Path(self._path).glob("*/*/*" + self._ext_audio))
        self.blist = blist

    def get_metadata(self, n: int) -> Tuple[str, int, str, int, int, int]:
        """Get metadata for the n-th sample from the dataset. Returns filepath instead of waveform,

        but otherwise returns the same fields as :py:func:`__getitem__`.



        Args:

            n (int): The index of the sample to be loaded



        Returns:

            Tuple of the following items;



            str:

                Path to audio

            int:

                Sample rate

            str:

                Transcript

            int:

                Speaker ID

            int:

                Chapter ID

            int:

                Utterance ID

            list:

                List of biasing words in the utterance

        """
        fileid = self._walker[n]
        return _get_librispeech_metadata(fileid, self._archive, self._url, self._ext_audio, self._ext_txt, self.blist)

    def __getitem__(self, n: int) -> Tuple[Tensor, int, str, int, int, int]:
        """Load the n-th sample from the dataset.



        Args:

            n (int): The index of the sample to be loaded



        Returns:

            Tuple of the following items;



            Tensor:

                Waveform

            int:

                Sample rate

            str:

                Transcript

            int:

                Speaker ID

            int:

                Chapter ID

            int:

                Utterance ID

            list:

                List of biasing words in the utterance

        """
        metadata = self.get_metadata(n)
        waveform = _load_waveform(self._archive, metadata[0], metadata[1])
        return (waveform,) + metadata[1:]

    def __len__(self) -> int:
        return len(self._walker)