Spaces:
Sleeping
Sleeping
from sympy.concrete.products import Product | |
from sympy.concrete.summations import Sum | |
from sympy.core.numbers import (Rational, oo, pi) | |
from sympy.core.relational import Eq | |
from sympy.core.singleton import S | |
from sympy.core.symbol import symbols | |
from sympy.functions.combinatorial.factorials import (RisingFactorial, factorial) | |
from sympy.functions.elementary.complexes import polar_lift | |
from sympy.functions.elementary.exponential import exp | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.functions.elementary.piecewise import Piecewise | |
from sympy.functions.special.bessel import besselk | |
from sympy.functions.special.gamma_functions import gamma | |
from sympy.matrices.dense import eye | |
from sympy.matrices.expressions.determinant import Determinant | |
from sympy.sets.fancysets import Range | |
from sympy.sets.sets import (Interval, ProductSet) | |
from sympy.simplify.simplify import simplify | |
from sympy.tensor.indexed import (Indexed, IndexedBase) | |
from sympy.core.numbers import comp | |
from sympy.integrals.integrals import integrate | |
from sympy.matrices import Matrix, MatrixSymbol | |
from sympy.matrices.expressions.matexpr import MatrixElement | |
from sympy.stats import density, median, marginal_distribution, Normal, Laplace, E, sample | |
from sympy.stats.joint_rv_types import (JointRV, MultivariateNormalDistribution, | |
JointDistributionHandmade, MultivariateT, NormalGamma, | |
GeneralizedMultivariateLogGammaOmega as GMVLGO, MultivariateBeta, | |
GeneralizedMultivariateLogGamma as GMVLG, MultivariateEwens, | |
Multinomial, NegativeMultinomial, MultivariateNormal, | |
MultivariateLaplace) | |
from sympy.testing.pytest import raises, XFAIL, skip, slow | |
from sympy.external import import_module | |
from sympy.abc import x, y | |
def test_Normal(): | |
m = Normal('A', [1, 2], [[1, 0], [0, 1]]) | |
A = MultivariateNormal('A', [1, 2], [[1, 0], [0, 1]]) | |
assert m == A | |
assert density(m)(1, 2) == 1/(2*pi) | |
assert m.pspace.distribution.set == ProductSet(S.Reals, S.Reals) | |
raises (ValueError, lambda:m[2]) | |
n = Normal('B', [1, 2, 3], [[1, 0, 0], [0, 1, 0], [0, 0, 1]]) | |
p = Normal('C', Matrix([1, 2]), Matrix([[1, 0], [0, 1]])) | |
assert density(m)(x, y) == density(p)(x, y) | |
assert marginal_distribution(n, 0, 1)(1, 2) == 1/(2*pi) | |
raises(ValueError, lambda: marginal_distribution(m)) | |
assert integrate(density(m)(x, y), (x, -oo, oo), (y, -oo, oo)).evalf() == 1.0 | |
N = Normal('N', [1, 2], [[x, 0], [0, y]]) | |
assert density(N)(0, 0) == exp(-((4*x + y)/(2*x*y)))/(2*pi*sqrt(x*y)) | |
raises (ValueError, lambda: Normal('M', [1, 2], [[1, 1], [1, -1]])) | |
# symbolic | |
n = symbols('n', integer=True, positive=True) | |
mu = MatrixSymbol('mu', n, 1) | |
sigma = MatrixSymbol('sigma', n, n) | |
X = Normal('X', mu, sigma) | |
assert density(X) == MultivariateNormalDistribution(mu, sigma) | |
raises (NotImplementedError, lambda: median(m)) | |
# Below tests should work after issue #17267 is resolved | |
# assert E(X) == mu | |
# assert variance(X) == sigma | |
# test symbolic multivariate normal densities | |
n = 3 | |
Sg = MatrixSymbol('Sg', n, n) | |
mu = MatrixSymbol('mu', n, 1) | |
obs = MatrixSymbol('obs', n, 1) | |
X = MultivariateNormal('X', mu, Sg) | |
density_X = density(X) | |
eval_a = density_X(obs).subs({Sg: eye(3), | |
mu: Matrix([0, 0, 0]), obs: Matrix([0, 0, 0])}).doit() | |
eval_b = density_X(0, 0, 0).subs({Sg: eye(3), mu: Matrix([0, 0, 0])}).doit() | |
assert eval_a == sqrt(2)/(4*pi**Rational(3/2)) | |
assert eval_b == sqrt(2)/(4*pi**Rational(3/2)) | |
n = symbols('n', integer=True, positive=True) | |
Sg = MatrixSymbol('Sg', n, n) | |
mu = MatrixSymbol('mu', n, 1) | |
obs = MatrixSymbol('obs', n, 1) | |
X = MultivariateNormal('X', mu, Sg) | |
density_X_at_obs = density(X)(obs) | |
expected_density = MatrixElement( | |
exp((S(1)/2) * (mu.T - obs.T) * Sg**(-1) * (-mu + obs)) / \ | |
sqrt((2*pi)**n * Determinant(Sg)), 0, 0) | |
assert density_X_at_obs == expected_density | |
def test_MultivariateTDist(): | |
t1 = MultivariateT('T', [0, 0], [[1, 0], [0, 1]], 2) | |
assert(density(t1))(1, 1) == 1/(8*pi) | |
assert t1.pspace.distribution.set == ProductSet(S.Reals, S.Reals) | |
assert integrate(density(t1)(x, y), (x, -oo, oo), \ | |
(y, -oo, oo)).evalf() == 1.0 | |
raises(ValueError, lambda: MultivariateT('T', [1, 2], [[1, 1], [1, -1]], 1)) | |
t2 = MultivariateT('t2', [1, 2], [[x, 0], [0, y]], 1) | |
assert density(t2)(1, 2) == 1/(2*pi*sqrt(x*y)) | |
def test_multivariate_laplace(): | |
raises(ValueError, lambda: Laplace('T', [1, 2], [[1, 2], [2, 1]])) | |
L = Laplace('L', [1, 0], [[1, 0], [0, 1]]) | |
L2 = MultivariateLaplace('L2', [1, 0], [[1, 0], [0, 1]]) | |
assert density(L)(2, 3) == exp(2)*besselk(0, sqrt(39))/pi | |
L1 = Laplace('L1', [1, 2], [[x, 0], [0, y]]) | |
assert density(L1)(0, 1) == \ | |
exp(2/y)*besselk(0, sqrt((2 + 4/y + 1/x)/y))/(pi*sqrt(x*y)) | |
assert L.pspace.distribution.set == ProductSet(S.Reals, S.Reals) | |
assert L.pspace.distribution == L2.pspace.distribution | |
def test_NormalGamma(): | |
ng = NormalGamma('G', 1, 2, 3, 4) | |
assert density(ng)(1, 1) == 32*exp(-4)/sqrt(pi) | |
assert ng.pspace.distribution.set == ProductSet(S.Reals, Interval(0, oo)) | |
raises(ValueError, lambda:NormalGamma('G', 1, 2, 3, -1)) | |
assert marginal_distribution(ng, 0)(1) == \ | |
3*sqrt(10)*gamma(Rational(7, 4))/(10*sqrt(pi)*gamma(Rational(5, 4))) | |
assert marginal_distribution(ng, y)(1) == exp(Rational(-1, 4))/128 | |
assert marginal_distribution(ng,[0,1])(x) == x**2*exp(-x/4)/128 | |
def test_GeneralizedMultivariateLogGammaDistribution(): | |
h = S.Half | |
omega = Matrix([[1, h, h, h], | |
[h, 1, h, h], | |
[h, h, 1, h], | |
[h, h, h, 1]]) | |
v, l, mu = (4, [1, 2, 3, 4], [1, 2, 3, 4]) | |
y_1, y_2, y_3, y_4 = symbols('y_1:5', real=True) | |
delta = symbols('d', positive=True) | |
G = GMVLGO('G', omega, v, l, mu) | |
Gd = GMVLG('Gd', delta, v, l, mu) | |
dend = ("d**4*Sum(4*24**(-n - 4)*(1 - d)**n*exp((n + 4)*(y_1 + 2*y_2 + 3*y_3 " | |
"+ 4*y_4) - exp(y_1) - exp(2*y_2)/2 - exp(3*y_3)/3 - exp(4*y_4)/4)/" | |
"(gamma(n + 1)*gamma(n + 4)**3), (n, 0, oo))") | |
assert str(density(Gd)(y_1, y_2, y_3, y_4)) == dend | |
den = ("5*2**(2/3)*5**(1/3)*Sum(4*24**(-n - 4)*(-2**(2/3)*5**(1/3)/4 + 1)**n*" | |
"exp((n + 4)*(y_1 + 2*y_2 + 3*y_3 + 4*y_4) - exp(y_1) - exp(2*y_2)/2 - " | |
"exp(3*y_3)/3 - exp(4*y_4)/4)/(gamma(n + 1)*gamma(n + 4)**3), (n, 0, oo))/64") | |
assert str(density(G)(y_1, y_2, y_3, y_4)) == den | |
marg = ("5*2**(2/3)*5**(1/3)*exp(4*y_1)*exp(-exp(y_1))*Integral(exp(-exp(4*G[3])" | |
"/4)*exp(16*G[3])*Integral(exp(-exp(3*G[2])/3)*exp(12*G[2])*Integral(exp(" | |
"-exp(2*G[1])/2)*exp(8*G[1])*Sum((-1/4)**n*(-4 + 2**(2/3)*5**(1/3" | |
"))**n*exp(n*y_1)*exp(2*n*G[1])*exp(3*n*G[2])*exp(4*n*G[3])/(24**n*gamma(n + 1)" | |
"*gamma(n + 4)**3), (n, 0, oo)), (G[1], -oo, oo)), (G[2], -oo, oo)), (G[3]" | |
", -oo, oo))/5308416") | |
assert str(marginal_distribution(G, G[0])(y_1)) == marg | |
omega_f1 = Matrix([[1, h, h]]) | |
omega_f2 = Matrix([[1, h, h, h], | |
[h, 1, 2, h], | |
[h, h, 1, h], | |
[h, h, h, 1]]) | |
omega_f3 = Matrix([[6, h, h, h], | |
[h, 1, 2, h], | |
[h, h, 1, h], | |
[h, h, h, 1]]) | |
v_f = symbols("v_f", positive=False, real=True) | |
l_f = [1, 2, v_f, 4] | |
m_f = [v_f, 2, 3, 4] | |
omega_f4 = Matrix([[1, h, h, h, h], | |
[h, 1, h, h, h], | |
[h, h, 1, h, h], | |
[h, h, h, 1, h], | |
[h, h, h, h, 1]]) | |
l_f1 = [1, 2, 3, 4, 5] | |
omega_f5 = Matrix([[1]]) | |
mu_f5 = l_f5 = [1] | |
raises(ValueError, lambda: GMVLGO('G', omega_f1, v, l, mu)) | |
raises(ValueError, lambda: GMVLGO('G', omega_f2, v, l, mu)) | |
raises(ValueError, lambda: GMVLGO('G', omega_f3, v, l, mu)) | |
raises(ValueError, lambda: GMVLGO('G', omega, v_f, l, mu)) | |
raises(ValueError, lambda: GMVLGO('G', omega, v, l_f, mu)) | |
raises(ValueError, lambda: GMVLGO('G', omega, v, l, m_f)) | |
raises(ValueError, lambda: GMVLGO('G', omega_f4, v, l, mu)) | |
raises(ValueError, lambda: GMVLGO('G', omega, v, l_f1, mu)) | |
raises(ValueError, lambda: GMVLGO('G', omega_f5, v, l_f5, mu_f5)) | |
raises(ValueError, lambda: GMVLG('G', Rational(3, 2), v, l, mu)) | |
def test_MultivariateBeta(): | |
a1, a2 = symbols('a1, a2', positive=True) | |
a1_f, a2_f = symbols('a1, a2', positive=False, real=True) | |
mb = MultivariateBeta('B', [a1, a2]) | |
mb_c = MultivariateBeta('C', a1, a2) | |
assert density(mb)(1, 2) == S(2)**(a2 - 1)*gamma(a1 + a2)/\ | |
(gamma(a1)*gamma(a2)) | |
assert marginal_distribution(mb_c, 0)(3) == S(3)**(a1 - 1)*gamma(a1 + a2)/\ | |
(a2*gamma(a1)*gamma(a2)) | |
raises(ValueError, lambda: MultivariateBeta('b1', [a1_f, a2])) | |
raises(ValueError, lambda: MultivariateBeta('b2', [a1, a2_f])) | |
raises(ValueError, lambda: MultivariateBeta('b3', [0, 0])) | |
raises(ValueError, lambda: MultivariateBeta('b4', [a1_f, a2_f])) | |
assert mb.pspace.distribution.set == ProductSet(Interval(0, 1), Interval(0, 1)) | |
def test_MultivariateEwens(): | |
n, theta, i = symbols('n theta i', positive=True) | |
# tests for integer dimensions | |
theta_f = symbols('t_f', negative=True) | |
a = symbols('a_1:4', positive = True, integer = True) | |
ed = MultivariateEwens('E', 3, theta) | |
assert density(ed)(a[0], a[1], a[2]) == Piecewise((6*2**(-a[1])*3**(-a[2])* | |
theta**a[0]*theta**a[1]*theta**a[2]/ | |
(theta*(theta + 1)*(theta + 2)* | |
factorial(a[0])*factorial(a[1])* | |
factorial(a[2])), Eq(a[0] + 2*a[1] + | |
3*a[2], 3)), (0, True)) | |
assert marginal_distribution(ed, ed[1])(a[1]) == Piecewise((6*2**(-a[1])* | |
theta**a[1]/((theta + 1)* | |
(theta + 2)*factorial(a[1])), | |
Eq(2*a[1] + 1, 3)), (0, True)) | |
raises(ValueError, lambda: MultivariateEwens('e1', 5, theta_f)) | |
assert ed.pspace.distribution.set == ProductSet(Range(0, 4, 1), | |
Range(0, 2, 1), Range(0, 2, 1)) | |
# tests for symbolic dimensions | |
eds = MultivariateEwens('E', n, theta) | |
a = IndexedBase('a') | |
j, k = symbols('j, k') | |
den = Piecewise((factorial(n)*Product(theta**a[j]*(j + 1)**(-a[j])/ | |
factorial(a[j]), (j, 0, n - 1))/RisingFactorial(theta, n), | |
Eq(n, Sum((k + 1)*a[k], (k, 0, n - 1)))), (0, True)) | |
assert density(eds)(a).dummy_eq(den) | |
def test_Multinomial(): | |
n, x1, x2, x3, x4 = symbols('n, x1, x2, x3, x4', nonnegative=True, integer=True) | |
p1, p2, p3, p4 = symbols('p1, p2, p3, p4', positive=True) | |
p1_f, n_f = symbols('p1_f, n_f', negative=True) | |
M = Multinomial('M', n, [p1, p2, p3, p4]) | |
C = Multinomial('C', 3, p1, p2, p3) | |
f = factorial | |
assert density(M)(x1, x2, x3, x4) == Piecewise((p1**x1*p2**x2*p3**x3*p4**x4* | |
f(n)/(f(x1)*f(x2)*f(x3)*f(x4)), | |
Eq(n, x1 + x2 + x3 + x4)), (0, True)) | |
assert marginal_distribution(C, C[0])(x1).subs(x1, 1) ==\ | |
3*p1*p2**2 +\ | |
6*p1*p2*p3 +\ | |
3*p1*p3**2 | |
raises(ValueError, lambda: Multinomial('b1', 5, [p1, p2, p3, p1_f])) | |
raises(ValueError, lambda: Multinomial('b2', n_f, [p1, p2, p3, p4])) | |
raises(ValueError, lambda: Multinomial('b3', n, 0.5, 0.4, 0.3, 0.1)) | |
def test_NegativeMultinomial(): | |
k0, x1, x2, x3, x4 = symbols('k0, x1, x2, x3, x4', nonnegative=True, integer=True) | |
p1, p2, p3, p4 = symbols('p1, p2, p3, p4', positive=True) | |
p1_f = symbols('p1_f', negative=True) | |
N = NegativeMultinomial('N', 4, [p1, p2, p3, p4]) | |
C = NegativeMultinomial('C', 4, 0.1, 0.2, 0.3) | |
g = gamma | |
f = factorial | |
assert simplify(density(N)(x1, x2, x3, x4) - | |
p1**x1*p2**x2*p3**x3*p4**x4*(-p1 - p2 - p3 - p4 + 1)**4*g(x1 + x2 + | |
x3 + x4 + 4)/(6*f(x1)*f(x2)*f(x3)*f(x4))) is S.Zero | |
assert comp(marginal_distribution(C, C[0])(1).evalf(), 0.33, .01) | |
raises(ValueError, lambda: NegativeMultinomial('b1', 5, [p1, p2, p3, p1_f])) | |
raises(ValueError, lambda: NegativeMultinomial('b2', k0, 0.5, 0.4, 0.3, 0.4)) | |
assert N.pspace.distribution.set == ProductSet(Range(0, oo, 1), | |
Range(0, oo, 1), Range(0, oo, 1), Range(0, oo, 1)) | |
def test_JointPSpace_marginal_distribution(): | |
T = MultivariateT('T', [0, 0], [[1, 0], [0, 1]], 2) | |
got = marginal_distribution(T, T[1])(x) | |
ans = sqrt(2)*(x**2/2 + 1)/(4*polar_lift(x**2/2 + 1)**(S(5)/2)) | |
assert got == ans, got | |
assert integrate(marginal_distribution(T, 1)(x), (x, -oo, oo)) == 1 | |
t = MultivariateT('T', [0, 0, 0], [[1, 0, 0], [0, 1, 0], [0, 0, 1]], 3) | |
assert comp(marginal_distribution(t, 0)(1).evalf(), 0.2, .01) | |
def test_JointRV(): | |
x1, x2 = (Indexed('x', i) for i in (1, 2)) | |
pdf = exp(-x1**2/2 + x1 - x2**2/2 - S.Half)/(2*pi) | |
X = JointRV('x', pdf) | |
assert density(X)(1, 2) == exp(-2)/(2*pi) | |
assert isinstance(X.pspace.distribution, JointDistributionHandmade) | |
assert marginal_distribution(X, 0)(2) == sqrt(2)*exp(Rational(-1, 2))/(2*sqrt(pi)) | |
def test_expectation(): | |
m = Normal('A', [x, y], [[1, 0], [0, 1]]) | |
assert simplify(E(m[1])) == y | |
def test_joint_vector_expectation(): | |
m = Normal('A', [x, y], [[1, 0], [0, 1]]) | |
assert E(m) == (x, y) | |
def test_sample_numpy(): | |
distribs_numpy = [ | |
MultivariateNormal("M", [3, 4], [[2, 1], [1, 2]]), | |
MultivariateBeta("B", [0.4, 5, 15, 50, 203]), | |
Multinomial("N", 50, [0.3, 0.2, 0.1, 0.25, 0.15]) | |
] | |
size = 3 | |
numpy = import_module('numpy') | |
if not numpy: | |
skip('Numpy is not installed. Abort tests for _sample_numpy.') | |
else: | |
for X in distribs_numpy: | |
samps = sample(X, size=size, library='numpy') | |
for sam in samps: | |
assert tuple(sam) in X.pspace.distribution.set | |
N_c = NegativeMultinomial('N', 3, 0.1, 0.1, 0.1) | |
raises(NotImplementedError, lambda: sample(N_c, library='numpy')) | |
def test_sample_scipy(): | |
distribs_scipy = [ | |
MultivariateNormal("M", [0, 0], [[0.1, 0.025], [0.025, 0.1]]), | |
MultivariateBeta("B", [0.4, 5, 15]), | |
Multinomial("N", 8, [0.3, 0.2, 0.1, 0.4]) | |
] | |
size = 3 | |
scipy = import_module('scipy') | |
if not scipy: | |
skip('Scipy not installed. Abort tests for _sample_scipy.') | |
else: | |
for X in distribs_scipy: | |
samps = sample(X, size=size) | |
samps2 = sample(X, size=(2, 2)) | |
for sam in samps: | |
assert tuple(sam) in X.pspace.distribution.set | |
for i in range(2): | |
for j in range(2): | |
assert tuple(samps2[i][j]) in X.pspace.distribution.set | |
N_c = NegativeMultinomial('N', 3, 0.1, 0.1, 0.1) | |
raises(NotImplementedError, lambda: sample(N_c)) | |
def test_sample_pymc(): | |
distribs_pymc = [ | |
MultivariateNormal("M", [5, 2], [[1, 0], [0, 1]]), | |
MultivariateBeta("B", [0.4, 5, 15]), | |
Multinomial("N", 4, [0.3, 0.2, 0.1, 0.4]) | |
] | |
size = 3 | |
pymc = import_module('pymc') | |
if not pymc: | |
skip('PyMC is not installed. Abort tests for _sample_pymc.') | |
else: | |
for X in distribs_pymc: | |
samps = sample(X, size=size, library='pymc') | |
for sam in samps: | |
assert tuple(sam.flatten()) in X.pspace.distribution.set | |
N_c = NegativeMultinomial('N', 3, 0.1, 0.1, 0.1) | |
raises(NotImplementedError, lambda: sample(N_c, library='pymc')) | |
def test_sample_seed(): | |
x1, x2 = (Indexed('x', i) for i in (1, 2)) | |
pdf = exp(-x1**2/2 + x1 - x2**2/2 - S.Half)/(2*pi) | |
X = JointRV('x', pdf) | |
libraries = ['scipy', 'numpy', 'pymc'] | |
for lib in libraries: | |
try: | |
imported_lib = import_module(lib) | |
if imported_lib: | |
s0, s1, s2 = [], [], [] | |
s0 = sample(X, size=10, library=lib, seed=0) | |
s1 = sample(X, size=10, library=lib, seed=0) | |
s2 = sample(X, size=10, library=lib, seed=1) | |
assert all(s0 == s1) | |
assert all(s1 != s2) | |
except NotImplementedError: | |
continue | |
# | |
# XXX: This fails for pymc. Previously the test appeared to pass but that is | |
# just because the library argument was not passed so the test always used | |
# scipy. | |
# | |
def test_issue_21057(): | |
m = Normal("x", [0, 0], [[0, 0], [0, 0]]) | |
n = MultivariateNormal("x", [0, 0], [[0, 0], [0, 0]]) | |
p = Normal("x", [0, 0], [[0, 0], [0, 1]]) | |
assert m == n | |
libraries = ('scipy', 'numpy') # , 'pymc') # <-- pymc fails | |
for library in libraries: | |
try: | |
imported_lib = import_module(library) | |
if imported_lib: | |
s1 = sample(m, size=8, library=library) | |
s2 = sample(n, size=8, library=library) | |
s3 = sample(p, size=8, library=library) | |
assert tuple(s1.flatten()) == tuple(s2.flatten()) | |
for s in s3: | |
assert tuple(s.flatten()) in p.pspace.distribution.set | |
except NotImplementedError: | |
continue | |
# | |
# When this passes the pymc part can be uncommented in test_issue_21057 above | |
# and this can be deleted. | |
# | |
def test_issue_21057_pymc(): | |
m = Normal("x", [0, 0], [[0, 0], [0, 0]]) | |
n = MultivariateNormal("x", [0, 0], [[0, 0], [0, 0]]) | |
p = Normal("x", [0, 0], [[0, 0], [0, 1]]) | |
assert m == n | |
libraries = ('pymc',) | |
for library in libraries: | |
try: | |
imported_lib = import_module(library) | |
if imported_lib: | |
s1 = sample(m, size=8, library=library) | |
s2 = sample(n, size=8, library=library) | |
s3 = sample(p, size=8, library=library) | |
assert tuple(s1.flatten()) == tuple(s2.flatten()) | |
for s in s3: | |
assert tuple(s.flatten()) in p.pspace.distribution.set | |
except NotImplementedError: | |
continue | |