File size: 18,653 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
from sympy.concrete.products import Product
from sympy.concrete.summations import Sum
from sympy.core.numbers import (Rational, oo, pi)
from sympy.core.relational import Eq
from sympy.core.singleton import S
from sympy.core.symbol import symbols
from sympy.functions.combinatorial.factorials import (RisingFactorial, factorial)
from sympy.functions.elementary.complexes import polar_lift
from sympy.functions.elementary.exponential import exp
from sympy.functions.elementary.miscellaneous import sqrt
from sympy.functions.elementary.piecewise import Piecewise
from sympy.functions.special.bessel import besselk
from sympy.functions.special.gamma_functions import gamma
from sympy.matrices.dense import eye
from sympy.matrices.expressions.determinant import Determinant
from sympy.sets.fancysets import Range
from sympy.sets.sets import (Interval, ProductSet)
from sympy.simplify.simplify import simplify
from sympy.tensor.indexed import (Indexed, IndexedBase)
from sympy.core.numbers import comp
from sympy.integrals.integrals import integrate
from sympy.matrices import Matrix, MatrixSymbol
from sympy.matrices.expressions.matexpr import MatrixElement
from sympy.stats import density, median, marginal_distribution, Normal, Laplace, E, sample
from sympy.stats.joint_rv_types import (JointRV, MultivariateNormalDistribution,
                JointDistributionHandmade, MultivariateT, NormalGamma,
                GeneralizedMultivariateLogGammaOmega as GMVLGO, MultivariateBeta,
                GeneralizedMultivariateLogGamma as GMVLG, MultivariateEwens,
                Multinomial, NegativeMultinomial, MultivariateNormal,
                MultivariateLaplace)
from sympy.testing.pytest import raises, XFAIL, skip, slow
from sympy.external import import_module

from sympy.abc import x, y



def test_Normal():
    m = Normal('A', [1, 2], [[1, 0], [0, 1]])
    A = MultivariateNormal('A', [1, 2], [[1, 0], [0, 1]])
    assert m == A
    assert density(m)(1, 2) == 1/(2*pi)
    assert m.pspace.distribution.set == ProductSet(S.Reals, S.Reals)
    raises (ValueError, lambda:m[2])
    n = Normal('B', [1, 2, 3], [[1, 0, 0], [0, 1, 0], [0, 0, 1]])
    p = Normal('C',  Matrix([1, 2]), Matrix([[1, 0], [0, 1]]))
    assert density(m)(x, y) == density(p)(x, y)
    assert marginal_distribution(n, 0, 1)(1, 2) == 1/(2*pi)
    raises(ValueError, lambda: marginal_distribution(m))
    assert integrate(density(m)(x, y), (x, -oo, oo), (y, -oo, oo)).evalf() == 1.0
    N = Normal('N', [1, 2], [[x, 0], [0, y]])
    assert density(N)(0, 0) == exp(-((4*x + y)/(2*x*y)))/(2*pi*sqrt(x*y))

    raises (ValueError, lambda: Normal('M', [1, 2], [[1, 1], [1, -1]]))
    # symbolic
    n = symbols('n', integer=True, positive=True)
    mu = MatrixSymbol('mu', n, 1)
    sigma = MatrixSymbol('sigma', n, n)
    X = Normal('X', mu, sigma)
    assert density(X) == MultivariateNormalDistribution(mu, sigma)
    raises (NotImplementedError, lambda: median(m))
    # Below tests should work after issue #17267 is resolved
    # assert E(X) == mu
    # assert variance(X) == sigma

    # test symbolic multivariate normal densities
    n = 3

    Sg = MatrixSymbol('Sg', n, n)
    mu = MatrixSymbol('mu', n, 1)
    obs = MatrixSymbol('obs', n, 1)

    X = MultivariateNormal('X', mu, Sg)
    density_X = density(X)

    eval_a = density_X(obs).subs({Sg: eye(3),
        mu: Matrix([0, 0, 0]), obs: Matrix([0, 0, 0])}).doit()
    eval_b = density_X(0, 0, 0).subs({Sg: eye(3), mu: Matrix([0, 0, 0])}).doit()

    assert eval_a == sqrt(2)/(4*pi**Rational(3/2))
    assert eval_b == sqrt(2)/(4*pi**Rational(3/2))

    n = symbols('n', integer=True, positive=True)

    Sg = MatrixSymbol('Sg', n, n)
    mu = MatrixSymbol('mu', n, 1)
    obs = MatrixSymbol('obs', n, 1)

    X = MultivariateNormal('X', mu, Sg)
    density_X_at_obs = density(X)(obs)

    expected_density = MatrixElement(
        exp((S(1)/2) * (mu.T - obs.T) * Sg**(-1) * (-mu + obs)) / \
        sqrt((2*pi)**n * Determinant(Sg)), 0, 0)

    assert density_X_at_obs == expected_density


def test_MultivariateTDist():
    t1 = MultivariateT('T', [0, 0], [[1, 0], [0, 1]], 2)
    assert(density(t1))(1, 1) == 1/(8*pi)
    assert t1.pspace.distribution.set == ProductSet(S.Reals, S.Reals)
    assert integrate(density(t1)(x, y), (x, -oo, oo), \
        (y, -oo, oo)).evalf() == 1.0
    raises(ValueError, lambda: MultivariateT('T', [1, 2], [[1, 1], [1, -1]], 1))
    t2 = MultivariateT('t2', [1, 2], [[x, 0], [0, y]], 1)
    assert density(t2)(1, 2) == 1/(2*pi*sqrt(x*y))


def test_multivariate_laplace():
    raises(ValueError, lambda: Laplace('T', [1, 2], [[1, 2], [2, 1]]))
    L = Laplace('L', [1, 0], [[1, 0], [0, 1]])
    L2 = MultivariateLaplace('L2', [1, 0], [[1, 0], [0, 1]])
    assert density(L)(2, 3) == exp(2)*besselk(0, sqrt(39))/pi
    L1 = Laplace('L1', [1, 2], [[x, 0], [0, y]])
    assert density(L1)(0, 1) == \
        exp(2/y)*besselk(0, sqrt((2 + 4/y + 1/x)/y))/(pi*sqrt(x*y))
    assert L.pspace.distribution.set == ProductSet(S.Reals, S.Reals)
    assert L.pspace.distribution == L2.pspace.distribution


def test_NormalGamma():
    ng = NormalGamma('G', 1, 2, 3, 4)
    assert density(ng)(1, 1) == 32*exp(-4)/sqrt(pi)
    assert ng.pspace.distribution.set == ProductSet(S.Reals, Interval(0, oo))
    raises(ValueError, lambda:NormalGamma('G', 1, 2, 3, -1))
    assert marginal_distribution(ng, 0)(1) == \
        3*sqrt(10)*gamma(Rational(7, 4))/(10*sqrt(pi)*gamma(Rational(5, 4)))
    assert marginal_distribution(ng, y)(1) == exp(Rational(-1, 4))/128
    assert marginal_distribution(ng,[0,1])(x) == x**2*exp(-x/4)/128


def test_GeneralizedMultivariateLogGammaDistribution():
    h = S.Half
    omega = Matrix([[1, h, h, h],
                     [h, 1, h, h],
                     [h, h, 1, h],
                     [h, h, h, 1]])
    v, l, mu = (4, [1, 2, 3, 4], [1, 2, 3, 4])
    y_1, y_2, y_3, y_4 = symbols('y_1:5', real=True)
    delta = symbols('d', positive=True)
    G = GMVLGO('G', omega, v, l, mu)
    Gd = GMVLG('Gd', delta, v, l, mu)
    dend = ("d**4*Sum(4*24**(-n - 4)*(1 - d)**n*exp((n + 4)*(y_1 + 2*y_2 + 3*y_3 "
            "+ 4*y_4) - exp(y_1) - exp(2*y_2)/2 - exp(3*y_3)/3 - exp(4*y_4)/4)/"
            "(gamma(n + 1)*gamma(n + 4)**3), (n, 0, oo))")
    assert str(density(Gd)(y_1, y_2, y_3, y_4)) == dend
    den = ("5*2**(2/3)*5**(1/3)*Sum(4*24**(-n - 4)*(-2**(2/3)*5**(1/3)/4 + 1)**n*"
          "exp((n + 4)*(y_1 + 2*y_2 + 3*y_3 + 4*y_4) - exp(y_1) - exp(2*y_2)/2 - "
          "exp(3*y_3)/3 - exp(4*y_4)/4)/(gamma(n + 1)*gamma(n + 4)**3), (n, 0, oo))/64")
    assert str(density(G)(y_1, y_2, y_3, y_4)) == den
    marg = ("5*2**(2/3)*5**(1/3)*exp(4*y_1)*exp(-exp(y_1))*Integral(exp(-exp(4*G[3])"
            "/4)*exp(16*G[3])*Integral(exp(-exp(3*G[2])/3)*exp(12*G[2])*Integral(exp("
            "-exp(2*G[1])/2)*exp(8*G[1])*Sum((-1/4)**n*(-4 + 2**(2/3)*5**(1/3"
            "))**n*exp(n*y_1)*exp(2*n*G[1])*exp(3*n*G[2])*exp(4*n*G[3])/(24**n*gamma(n + 1)"
            "*gamma(n + 4)**3), (n, 0, oo)), (G[1], -oo, oo)), (G[2], -oo, oo)), (G[3]"
            ", -oo, oo))/5308416")
    assert str(marginal_distribution(G, G[0])(y_1)) == marg
    omega_f1 = Matrix([[1, h, h]])
    omega_f2 = Matrix([[1, h, h, h],
                     [h, 1, 2, h],
                     [h, h, 1, h],
                     [h, h, h, 1]])
    omega_f3 = Matrix([[6, h, h, h],
                     [h, 1, 2, h],
                     [h, h, 1, h],
                     [h, h, h, 1]])
    v_f = symbols("v_f", positive=False, real=True)
    l_f = [1, 2, v_f, 4]
    m_f = [v_f, 2, 3, 4]
    omega_f4 = Matrix([[1, h, h, h, h],
                     [h, 1, h, h, h],
                     [h, h, 1, h, h],
                     [h, h, h, 1, h],
                     [h, h, h, h, 1]])
    l_f1 = [1, 2, 3, 4, 5]
    omega_f5 = Matrix([[1]])
    mu_f5 = l_f5 = [1]

    raises(ValueError, lambda: GMVLGO('G', omega_f1, v, l, mu))
    raises(ValueError, lambda: GMVLGO('G', omega_f2, v, l, mu))
    raises(ValueError, lambda: GMVLGO('G', omega_f3, v, l, mu))
    raises(ValueError, lambda: GMVLGO('G', omega, v_f, l, mu))
    raises(ValueError, lambda: GMVLGO('G', omega, v, l_f, mu))
    raises(ValueError, lambda: GMVLGO('G', omega, v, l, m_f))
    raises(ValueError, lambda: GMVLGO('G', omega_f4, v, l, mu))
    raises(ValueError, lambda: GMVLGO('G', omega, v, l_f1, mu))
    raises(ValueError, lambda: GMVLGO('G', omega_f5, v, l_f5, mu_f5))
    raises(ValueError, lambda: GMVLG('G', Rational(3, 2), v, l, mu))


def test_MultivariateBeta():
    a1, a2 = symbols('a1, a2', positive=True)
    a1_f, a2_f = symbols('a1, a2', positive=False, real=True)
    mb = MultivariateBeta('B', [a1, a2])
    mb_c = MultivariateBeta('C', a1, a2)
    assert density(mb)(1, 2) == S(2)**(a2 - 1)*gamma(a1 + a2)/\
                                (gamma(a1)*gamma(a2))
    assert marginal_distribution(mb_c, 0)(3) == S(3)**(a1 - 1)*gamma(a1 + a2)/\
                                                (a2*gamma(a1)*gamma(a2))
    raises(ValueError, lambda: MultivariateBeta('b1', [a1_f, a2]))
    raises(ValueError, lambda: MultivariateBeta('b2', [a1, a2_f]))
    raises(ValueError, lambda: MultivariateBeta('b3', [0, 0]))
    raises(ValueError, lambda: MultivariateBeta('b4', [a1_f, a2_f]))
    assert mb.pspace.distribution.set == ProductSet(Interval(0, 1), Interval(0, 1))


def test_MultivariateEwens():
    n, theta, i = symbols('n theta i', positive=True)

    # tests for integer dimensions
    theta_f = symbols('t_f', negative=True)
    a = symbols('a_1:4', positive = True, integer = True)
    ed = MultivariateEwens('E', 3, theta)
    assert density(ed)(a[0], a[1], a[2]) == Piecewise((6*2**(-a[1])*3**(-a[2])*
                                            theta**a[0]*theta**a[1]*theta**a[2]/
                                            (theta*(theta + 1)*(theta + 2)*
                                            factorial(a[0])*factorial(a[1])*
                                            factorial(a[2])), Eq(a[0] + 2*a[1] +
                                            3*a[2], 3)), (0, True))
    assert marginal_distribution(ed, ed[1])(a[1]) == Piecewise((6*2**(-a[1])*
                                                    theta**a[1]/((theta + 1)*
                                                    (theta + 2)*factorial(a[1])),
                                                    Eq(2*a[1] + 1, 3)), (0, True))
    raises(ValueError, lambda: MultivariateEwens('e1', 5, theta_f))
    assert ed.pspace.distribution.set == ProductSet(Range(0, 4, 1),
                                            Range(0, 2, 1), Range(0, 2, 1))

    # tests for symbolic dimensions
    eds = MultivariateEwens('E', n, theta)
    a = IndexedBase('a')
    j, k = symbols('j, k')
    den = Piecewise((factorial(n)*Product(theta**a[j]*(j + 1)**(-a[j])/
           factorial(a[j]), (j, 0, n - 1))/RisingFactorial(theta, n),
            Eq(n, Sum((k + 1)*a[k], (k, 0, n - 1)))), (0, True))
    assert density(eds)(a).dummy_eq(den)


def test_Multinomial():
    n, x1, x2, x3, x4 = symbols('n, x1, x2, x3, x4', nonnegative=True, integer=True)
    p1, p2, p3, p4 = symbols('p1, p2, p3, p4', positive=True)
    p1_f, n_f = symbols('p1_f, n_f', negative=True)
    M = Multinomial('M', n, [p1, p2, p3, p4])
    C = Multinomial('C', 3, p1, p2, p3)
    f = factorial
    assert density(M)(x1, x2, x3, x4) == Piecewise((p1**x1*p2**x2*p3**x3*p4**x4*
                                            f(n)/(f(x1)*f(x2)*f(x3)*f(x4)),
                                            Eq(n, x1 + x2 + x3 + x4)), (0, True))
    assert marginal_distribution(C, C[0])(x1).subs(x1, 1) ==\
                                                            3*p1*p2**2 +\
                                                            6*p1*p2*p3 +\
                                                            3*p1*p3**2
    raises(ValueError, lambda: Multinomial('b1', 5, [p1, p2, p3, p1_f]))
    raises(ValueError, lambda: Multinomial('b2', n_f, [p1, p2, p3, p4]))
    raises(ValueError, lambda: Multinomial('b3', n, 0.5, 0.4, 0.3, 0.1))


def test_NegativeMultinomial():
    k0, x1, x2, x3, x4 = symbols('k0, x1, x2, x3, x4', nonnegative=True, integer=True)
    p1, p2, p3, p4 = symbols('p1, p2, p3, p4', positive=True)
    p1_f = symbols('p1_f', negative=True)
    N = NegativeMultinomial('N', 4, [p1, p2, p3, p4])
    C = NegativeMultinomial('C', 4, 0.1, 0.2, 0.3)
    g = gamma
    f = factorial
    assert simplify(density(N)(x1, x2, x3, x4) -
            p1**x1*p2**x2*p3**x3*p4**x4*(-p1 - p2 - p3 - p4 + 1)**4*g(x1 + x2 +
            x3 + x4 + 4)/(6*f(x1)*f(x2)*f(x3)*f(x4))) is S.Zero
    assert comp(marginal_distribution(C, C[0])(1).evalf(), 0.33, .01)
    raises(ValueError, lambda: NegativeMultinomial('b1', 5, [p1, p2, p3, p1_f]))
    raises(ValueError, lambda: NegativeMultinomial('b2', k0, 0.5, 0.4, 0.3, 0.4))
    assert N.pspace.distribution.set == ProductSet(Range(0, oo, 1),
                    Range(0, oo, 1), Range(0, oo, 1), Range(0, oo, 1))


@slow
def test_JointPSpace_marginal_distribution():
    T = MultivariateT('T', [0, 0], [[1, 0], [0, 1]], 2)
    got = marginal_distribution(T, T[1])(x)
    ans = sqrt(2)*(x**2/2 + 1)/(4*polar_lift(x**2/2 + 1)**(S(5)/2))
    assert got == ans, got
    assert integrate(marginal_distribution(T, 1)(x), (x, -oo, oo)) == 1

    t = MultivariateT('T', [0, 0, 0], [[1, 0, 0], [0, 1, 0], [0, 0, 1]], 3)
    assert comp(marginal_distribution(t, 0)(1).evalf(), 0.2, .01)


def test_JointRV():
    x1, x2 = (Indexed('x', i) for i in (1, 2))
    pdf = exp(-x1**2/2 + x1 - x2**2/2 - S.Half)/(2*pi)
    X = JointRV('x', pdf)
    assert density(X)(1, 2) == exp(-2)/(2*pi)
    assert isinstance(X.pspace.distribution, JointDistributionHandmade)
    assert marginal_distribution(X, 0)(2) == sqrt(2)*exp(Rational(-1, 2))/(2*sqrt(pi))


def test_expectation():
    m = Normal('A', [x, y], [[1, 0], [0, 1]])
    assert simplify(E(m[1])) == y


@XFAIL
def test_joint_vector_expectation():
    m = Normal('A', [x, y], [[1, 0], [0, 1]])
    assert E(m) == (x, y)


def test_sample_numpy():
    distribs_numpy = [
        MultivariateNormal("M", [3, 4], [[2, 1], [1, 2]]),
        MultivariateBeta("B", [0.4, 5, 15, 50, 203]),
        Multinomial("N", 50, [0.3, 0.2, 0.1, 0.25, 0.15])
    ]
    size = 3
    numpy = import_module('numpy')
    if not numpy:
        skip('Numpy is not installed. Abort tests for _sample_numpy.')
    else:
        for X in distribs_numpy:
            samps = sample(X, size=size, library='numpy')
            for sam in samps:
                assert tuple(sam) in X.pspace.distribution.set
        N_c = NegativeMultinomial('N', 3, 0.1, 0.1, 0.1)
        raises(NotImplementedError, lambda: sample(N_c, library='numpy'))


def test_sample_scipy():
    distribs_scipy = [
        MultivariateNormal("M", [0, 0], [[0.1, 0.025], [0.025, 0.1]]),
        MultivariateBeta("B", [0.4, 5, 15]),
        Multinomial("N", 8, [0.3, 0.2, 0.1, 0.4])
    ]

    size = 3
    scipy = import_module('scipy')
    if not scipy:
        skip('Scipy not installed. Abort tests for _sample_scipy.')
    else:
        for X in distribs_scipy:
            samps = sample(X, size=size)
            samps2 = sample(X, size=(2, 2))
            for sam in samps:
                assert tuple(sam) in X.pspace.distribution.set
            for i in range(2):
                for j in range(2):
                    assert tuple(samps2[i][j]) in X.pspace.distribution.set
        N_c = NegativeMultinomial('N', 3, 0.1, 0.1, 0.1)
        raises(NotImplementedError, lambda: sample(N_c))


def test_sample_pymc():
    distribs_pymc = [
        MultivariateNormal("M", [5, 2], [[1, 0], [0, 1]]),
        MultivariateBeta("B", [0.4, 5, 15]),
        Multinomial("N", 4, [0.3, 0.2, 0.1, 0.4])
    ]
    size = 3
    pymc = import_module('pymc')
    if not pymc:
        skip('PyMC is not installed. Abort tests for _sample_pymc.')
    else:
        for X in distribs_pymc:
            samps = sample(X, size=size, library='pymc')
            for sam in samps:
                assert tuple(sam.flatten()) in X.pspace.distribution.set
        N_c = NegativeMultinomial('N', 3, 0.1, 0.1, 0.1)
        raises(NotImplementedError, lambda: sample(N_c, library='pymc'))


def test_sample_seed():
    x1, x2 = (Indexed('x', i) for i in (1, 2))
    pdf = exp(-x1**2/2 + x1 - x2**2/2 - S.Half)/(2*pi)
    X = JointRV('x', pdf)

    libraries = ['scipy', 'numpy', 'pymc']
    for lib in libraries:
        try:
            imported_lib = import_module(lib)
            if imported_lib:
                s0, s1, s2 = [], [], []
                s0 = sample(X, size=10, library=lib, seed=0)
                s1 = sample(X, size=10, library=lib, seed=0)
                s2 = sample(X, size=10, library=lib, seed=1)
                assert all(s0 == s1)
                assert all(s1 != s2)
        except NotImplementedError:
            continue

#
# XXX: This fails for pymc. Previously the test appeared to pass but that is
# just because the library argument was not passed so the test always used
# scipy.
#
def test_issue_21057():
    m = Normal("x", [0, 0], [[0, 0], [0, 0]])
    n = MultivariateNormal("x", [0, 0], [[0, 0], [0, 0]])
    p = Normal("x", [0, 0], [[0, 0], [0, 1]])
    assert m == n
    libraries = ('scipy', 'numpy')  # , 'pymc')  # <-- pymc fails
    for library in libraries:
        try:
            imported_lib = import_module(library)
            if imported_lib:
                s1 = sample(m, size=8, library=library)
                s2 = sample(n, size=8, library=library)
                s3 = sample(p, size=8, library=library)
                assert tuple(s1.flatten()) == tuple(s2.flatten())
                for s in s3:
                    assert tuple(s.flatten()) in p.pspace.distribution.set
        except NotImplementedError:
            continue


#
# When this passes the pymc part can be uncommented in test_issue_21057 above
# and this can be deleted.
#
@XFAIL
def test_issue_21057_pymc():
    m = Normal("x", [0, 0], [[0, 0], [0, 0]])
    n = MultivariateNormal("x", [0, 0], [[0, 0], [0, 0]])
    p = Normal("x", [0, 0], [[0, 0], [0, 1]])
    assert m == n
    libraries = ('pymc',)
    for library in libraries:
        try:
            imported_lib = import_module(library)
            if imported_lib:
                s1 = sample(m, size=8, library=library)
                s2 = sample(n, size=8, library=library)
                s3 = sample(p, size=8, library=library)
                assert tuple(s1.flatten()) == tuple(s2.flatten())
                for s in s3:
                    assert tuple(s.flatten()) in p.pspace.distribution.set
        except NotImplementedError:
            continue