Spaces:
Sleeping
Sleeping
from math import gcd | |
from sympy.ntheory.generate import Sieve, sieve | |
from sympy.ntheory.primetest import (mr, _lucas_extrastrong_params, is_lucas_prp, is_square, | |
is_strong_lucas_prp, is_extra_strong_lucas_prp, | |
proth_test, isprime, is_euler_pseudoprime, | |
is_gaussian_prime, is_fermat_pseudoprime, is_euler_jacobi_pseudoprime, | |
MERSENNE_PRIME_EXPONENTS, _lucas_lehmer_primality_test, | |
is_mersenne_prime) | |
from sympy.testing.pytest import slow, raises | |
from sympy.core.numbers import I, Float | |
def test_is_fermat_pseudoprime(): | |
assert is_fermat_pseudoprime(5, 1) | |
assert is_fermat_pseudoprime(9, 1) | |
def test_euler_pseudoprimes(): | |
assert is_euler_pseudoprime(13, 1) | |
assert is_euler_pseudoprime(15, 1) | |
assert is_euler_pseudoprime(17, 6) | |
assert is_euler_pseudoprime(101, 7) | |
assert is_euler_pseudoprime(1009, 10) | |
assert is_euler_pseudoprime(11287, 41) | |
raises(ValueError, lambda: is_euler_pseudoprime(0, 4)) | |
raises(ValueError, lambda: is_euler_pseudoprime(3, 0)) | |
raises(ValueError, lambda: is_euler_pseudoprime(15, 6)) | |
# A006970 | |
euler_prp = [341, 561, 1105, 1729, 1905, 2047, 2465, 3277, | |
4033, 4681, 5461, 6601, 8321, 8481, 10261, 10585] | |
for p in euler_prp: | |
assert is_euler_pseudoprime(p, 2) | |
# A048950 | |
euler_prp = [121, 703, 1729, 1891, 2821, 3281, 7381, 8401, 8911, 10585, | |
12403, 15457, 15841, 16531, 18721, 19345, 23521, 24661, 28009] | |
for p in euler_prp: | |
assert is_euler_pseudoprime(p, 3) | |
# A033181 | |
absolute_euler_prp = [1729, 2465, 15841, 41041, 46657, 75361, | |
162401, 172081, 399001, 449065, 488881] | |
for p in absolute_euler_prp: | |
for a in range(2, p): | |
if gcd(a, p) != 1: | |
continue | |
assert is_euler_pseudoprime(p, a) | |
def test_is_euler_jacobi_pseudoprime(): | |
assert is_euler_jacobi_pseudoprime(11, 1) | |
assert is_euler_jacobi_pseudoprime(15, 1) | |
def test_lucas_extrastrong_params(): | |
assert _lucas_extrastrong_params(3) == (5, 3, 1) | |
assert _lucas_extrastrong_params(5) == (12, 4, 1) | |
assert _lucas_extrastrong_params(7) == (5, 3, 1) | |
assert _lucas_extrastrong_params(9) == (0, 0, 0) | |
assert _lucas_extrastrong_params(11) == (21, 5, 1) | |
assert _lucas_extrastrong_params(59) == (32, 6, 1) | |
assert _lucas_extrastrong_params(479) == (117, 11, 1) | |
def test_is_extra_strong_lucas_prp(): | |
assert is_extra_strong_lucas_prp(4) == False | |
assert is_extra_strong_lucas_prp(989) == True | |
assert is_extra_strong_lucas_prp(10877) == True | |
assert is_extra_strong_lucas_prp(9) == False | |
assert is_extra_strong_lucas_prp(16) == False | |
assert is_extra_strong_lucas_prp(169) == False | |
def test_prps(): | |
oddcomposites = [n for n in range(1, 10**5) if | |
n % 2 and not isprime(n)] | |
# A checksum would be better. | |
assert sum(oddcomposites) == 2045603465 | |
assert [n for n in oddcomposites if mr(n, [2])] == [ | |
2047, 3277, 4033, 4681, 8321, 15841, 29341, 42799, 49141, | |
52633, 65281, 74665, 80581, 85489, 88357, 90751] | |
assert [n for n in oddcomposites if mr(n, [3])] == [ | |
121, 703, 1891, 3281, 8401, 8911, 10585, 12403, 16531, | |
18721, 19345, 23521, 31621, 44287, 47197, 55969, 63139, | |
74593, 79003, 82513, 87913, 88573, 97567] | |
assert [n for n in oddcomposites if mr(n, [325])] == [ | |
9, 25, 27, 49, 65, 81, 325, 341, 343, 697, 1141, 2059, | |
2149, 3097, 3537, 4033, 4681, 4941, 5833, 6517, 7987, 8911, | |
12403, 12913, 15043, 16021, 20017, 22261, 23221, 24649, | |
24929, 31841, 35371, 38503, 43213, 44173, 47197, 50041, | |
55909, 56033, 58969, 59089, 61337, 65441, 68823, 72641, | |
76793, 78409, 85879] | |
assert not any(mr(n, [9345883071009581737]) for n in oddcomposites) | |
assert [n for n in oddcomposites if is_lucas_prp(n)] == [ | |
323, 377, 1159, 1829, 3827, 5459, 5777, 9071, 9179, 10877, | |
11419, 11663, 13919, 14839, 16109, 16211, 18407, 18971, | |
19043, 22499, 23407, 24569, 25199, 25877, 26069, 27323, | |
32759, 34943, 35207, 39059, 39203, 39689, 40309, 44099, | |
46979, 47879, 50183, 51983, 53663, 56279, 58519, 60377, | |
63881, 69509, 72389, 73919, 75077, 77219, 79547, 79799, | |
82983, 84419, 86063, 90287, 94667, 97019, 97439] | |
assert [n for n in oddcomposites if is_strong_lucas_prp(n)] == [ | |
5459, 5777, 10877, 16109, 18971, 22499, 24569, 25199, 40309, | |
58519, 75077, 97439] | |
assert [n for n in oddcomposites if is_extra_strong_lucas_prp(n) | |
] == [ | |
989, 3239, 5777, 10877, 27971, 29681, 30739, 31631, 39059, | |
72389, 73919, 75077] | |
def test_proth_test(): | |
# Proth number | |
A080075 = [3, 5, 9, 13, 17, 25, 33, 41, 49, 57, 65, | |
81, 97, 113, 129, 145, 161, 177, 193] | |
# Proth prime | |
A080076 = [3, 5, 13, 17, 41, 97, 113, 193] | |
for n in range(200): | |
if n in A080075: | |
assert proth_test(n) == (n in A080076) | |
else: | |
raises(ValueError, lambda: proth_test(n)) | |
def test_lucas_lehmer_primality_test(): | |
for p in sieve.primerange(3, 100): | |
assert _lucas_lehmer_primality_test(p) == (p in MERSENNE_PRIME_EXPONENTS) | |
def test_is_mersenne_prime(): | |
assert is_mersenne_prime(-3) is False | |
assert is_mersenne_prime(3) is True | |
assert is_mersenne_prime(10) is False | |
assert is_mersenne_prime(127) is True | |
assert is_mersenne_prime(511) is False | |
assert is_mersenne_prime(131071) is True | |
assert is_mersenne_prime(2147483647) is True | |
def test_isprime(): | |
s = Sieve() | |
s.extend(100000) | |
ps = set(s.primerange(2, 100001)) | |
for n in range(100001): | |
# if (n in ps) != isprime(n): print n | |
assert (n in ps) == isprime(n) | |
assert isprime(179424673) | |
assert isprime(20678048681) | |
assert isprime(1968188556461) | |
assert isprime(2614941710599) | |
assert isprime(65635624165761929287) | |
assert isprime(1162566711635022452267983) | |
assert isprime(77123077103005189615466924501) | |
assert isprime(3991617775553178702574451996736229) | |
assert isprime(273952953553395851092382714516720001799) | |
assert isprime(int(''' | |
531137992816767098689588206552468627329593117727031923199444138200403\ | |
559860852242739162502265229285668889329486246501015346579337652707239\ | |
409519978766587351943831270835393219031728127''')) | |
# Some Mersenne primes | |
assert isprime(2**61 - 1) | |
assert isprime(2**89 - 1) | |
assert isprime(2**607 - 1) | |
# (but not all Mersenne's are primes | |
assert not isprime(2**601 - 1) | |
# pseudoprimes | |
#------------- | |
# to some small bases | |
assert not isprime(2152302898747) | |
assert not isprime(3474749660383) | |
assert not isprime(341550071728321) | |
assert not isprime(3825123056546413051) | |
# passes the base set [2, 3, 7, 61, 24251] | |
assert not isprime(9188353522314541) | |
# large examples | |
assert not isprime(877777777777777777777777) | |
# conjectured psi_12 given at http://mathworld.wolfram.com/StrongPseudoprime.html | |
assert not isprime(318665857834031151167461) | |
# conjectured psi_17 given at http://mathworld.wolfram.com/StrongPseudoprime.html | |
assert not isprime(564132928021909221014087501701) | |
# Arnault's 1993 number; a factor of it is | |
# 400958216639499605418306452084546853005188166041132508774506\ | |
# 204738003217070119624271622319159721973358216316508535816696\ | |
# 9145233813917169287527980445796800452592031836601 | |
assert not isprime(int(''' | |
803837457453639491257079614341942108138837688287558145837488917522297\ | |
427376533365218650233616396004545791504202360320876656996676098728404\ | |
396540823292873879185086916685732826776177102938969773947016708230428\ | |
687109997439976544144845341155872450633409279022275296229414984230688\ | |
1685404326457534018329786111298960644845216191652872597534901''')) | |
# Arnault's 1995 number; can be factored as | |
# p1*(313*(p1 - 1) + 1)*(353*(p1 - 1) + 1) where p1 is | |
# 296744956686855105501541746429053327307719917998530433509950\ | |
# 755312768387531717701995942385964281211880336647542183455624\ | |
# 93168782883 | |
assert not isprime(int(''' | |
288714823805077121267142959713039399197760945927972270092651602419743\ | |
230379915273311632898314463922594197780311092934965557841894944174093\ | |
380561511397999942154241693397290542371100275104208013496673175515285\ | |
922696291677532547504444585610194940420003990443211677661994962953925\ | |
045269871932907037356403227370127845389912612030924484149472897688540\ | |
6024976768122077071687938121709811322297802059565867''')) | |
sieve.extend(3000) | |
assert isprime(2819) | |
assert not isprime(2931) | |
raises(ValueError, lambda: isprime(2.0)) | |
raises(ValueError, lambda: isprime(Float(2))) | |
def test_is_square(): | |
assert [i for i in range(25) if is_square(i)] == [0, 1, 4, 9, 16] | |
# issue #17044 | |
assert not is_square(60 ** 3) | |
assert not is_square(60 ** 5) | |
assert not is_square(84 ** 7) | |
assert not is_square(105 ** 9) | |
assert not is_square(120 ** 3) | |
def test_is_gaussianprime(): | |
assert is_gaussian_prime(7*I) | |
assert is_gaussian_prime(7) | |
assert is_gaussian_prime(2 + 3*I) | |
assert not is_gaussian_prime(2 + 2*I) | |