Kano001's picture
Upload 3077 files
6a86ad5 verified
raw
history blame
9.35 kB
from math import gcd
from sympy.ntheory.generate import Sieve, sieve
from sympy.ntheory.primetest import (mr, _lucas_extrastrong_params, is_lucas_prp, is_square,
is_strong_lucas_prp, is_extra_strong_lucas_prp,
proth_test, isprime, is_euler_pseudoprime,
is_gaussian_prime, is_fermat_pseudoprime, is_euler_jacobi_pseudoprime,
MERSENNE_PRIME_EXPONENTS, _lucas_lehmer_primality_test,
is_mersenne_prime)
from sympy.testing.pytest import slow, raises
from sympy.core.numbers import I, Float
def test_is_fermat_pseudoprime():
assert is_fermat_pseudoprime(5, 1)
assert is_fermat_pseudoprime(9, 1)
def test_euler_pseudoprimes():
assert is_euler_pseudoprime(13, 1)
assert is_euler_pseudoprime(15, 1)
assert is_euler_pseudoprime(17, 6)
assert is_euler_pseudoprime(101, 7)
assert is_euler_pseudoprime(1009, 10)
assert is_euler_pseudoprime(11287, 41)
raises(ValueError, lambda: is_euler_pseudoprime(0, 4))
raises(ValueError, lambda: is_euler_pseudoprime(3, 0))
raises(ValueError, lambda: is_euler_pseudoprime(15, 6))
# A006970
euler_prp = [341, 561, 1105, 1729, 1905, 2047, 2465, 3277,
4033, 4681, 5461, 6601, 8321, 8481, 10261, 10585]
for p in euler_prp:
assert is_euler_pseudoprime(p, 2)
# A048950
euler_prp = [121, 703, 1729, 1891, 2821, 3281, 7381, 8401, 8911, 10585,
12403, 15457, 15841, 16531, 18721, 19345, 23521, 24661, 28009]
for p in euler_prp:
assert is_euler_pseudoprime(p, 3)
# A033181
absolute_euler_prp = [1729, 2465, 15841, 41041, 46657, 75361,
162401, 172081, 399001, 449065, 488881]
for p in absolute_euler_prp:
for a in range(2, p):
if gcd(a, p) != 1:
continue
assert is_euler_pseudoprime(p, a)
def test_is_euler_jacobi_pseudoprime():
assert is_euler_jacobi_pseudoprime(11, 1)
assert is_euler_jacobi_pseudoprime(15, 1)
def test_lucas_extrastrong_params():
assert _lucas_extrastrong_params(3) == (5, 3, 1)
assert _lucas_extrastrong_params(5) == (12, 4, 1)
assert _lucas_extrastrong_params(7) == (5, 3, 1)
assert _lucas_extrastrong_params(9) == (0, 0, 0)
assert _lucas_extrastrong_params(11) == (21, 5, 1)
assert _lucas_extrastrong_params(59) == (32, 6, 1)
assert _lucas_extrastrong_params(479) == (117, 11, 1)
def test_is_extra_strong_lucas_prp():
assert is_extra_strong_lucas_prp(4) == False
assert is_extra_strong_lucas_prp(989) == True
assert is_extra_strong_lucas_prp(10877) == True
assert is_extra_strong_lucas_prp(9) == False
assert is_extra_strong_lucas_prp(16) == False
assert is_extra_strong_lucas_prp(169) == False
@slow
def test_prps():
oddcomposites = [n for n in range(1, 10**5) if
n % 2 and not isprime(n)]
# A checksum would be better.
assert sum(oddcomposites) == 2045603465
assert [n for n in oddcomposites if mr(n, [2])] == [
2047, 3277, 4033, 4681, 8321, 15841, 29341, 42799, 49141,
52633, 65281, 74665, 80581, 85489, 88357, 90751]
assert [n for n in oddcomposites if mr(n, [3])] == [
121, 703, 1891, 3281, 8401, 8911, 10585, 12403, 16531,
18721, 19345, 23521, 31621, 44287, 47197, 55969, 63139,
74593, 79003, 82513, 87913, 88573, 97567]
assert [n for n in oddcomposites if mr(n, [325])] == [
9, 25, 27, 49, 65, 81, 325, 341, 343, 697, 1141, 2059,
2149, 3097, 3537, 4033, 4681, 4941, 5833, 6517, 7987, 8911,
12403, 12913, 15043, 16021, 20017, 22261, 23221, 24649,
24929, 31841, 35371, 38503, 43213, 44173, 47197, 50041,
55909, 56033, 58969, 59089, 61337, 65441, 68823, 72641,
76793, 78409, 85879]
assert not any(mr(n, [9345883071009581737]) for n in oddcomposites)
assert [n for n in oddcomposites if is_lucas_prp(n)] == [
323, 377, 1159, 1829, 3827, 5459, 5777, 9071, 9179, 10877,
11419, 11663, 13919, 14839, 16109, 16211, 18407, 18971,
19043, 22499, 23407, 24569, 25199, 25877, 26069, 27323,
32759, 34943, 35207, 39059, 39203, 39689, 40309, 44099,
46979, 47879, 50183, 51983, 53663, 56279, 58519, 60377,
63881, 69509, 72389, 73919, 75077, 77219, 79547, 79799,
82983, 84419, 86063, 90287, 94667, 97019, 97439]
assert [n for n in oddcomposites if is_strong_lucas_prp(n)] == [
5459, 5777, 10877, 16109, 18971, 22499, 24569, 25199, 40309,
58519, 75077, 97439]
assert [n for n in oddcomposites if is_extra_strong_lucas_prp(n)
] == [
989, 3239, 5777, 10877, 27971, 29681, 30739, 31631, 39059,
72389, 73919, 75077]
def test_proth_test():
# Proth number
A080075 = [3, 5, 9, 13, 17, 25, 33, 41, 49, 57, 65,
81, 97, 113, 129, 145, 161, 177, 193]
# Proth prime
A080076 = [3, 5, 13, 17, 41, 97, 113, 193]
for n in range(200):
if n in A080075:
assert proth_test(n) == (n in A080076)
else:
raises(ValueError, lambda: proth_test(n))
def test_lucas_lehmer_primality_test():
for p in sieve.primerange(3, 100):
assert _lucas_lehmer_primality_test(p) == (p in MERSENNE_PRIME_EXPONENTS)
def test_is_mersenne_prime():
assert is_mersenne_prime(-3) is False
assert is_mersenne_prime(3) is True
assert is_mersenne_prime(10) is False
assert is_mersenne_prime(127) is True
assert is_mersenne_prime(511) is False
assert is_mersenne_prime(131071) is True
assert is_mersenne_prime(2147483647) is True
def test_isprime():
s = Sieve()
s.extend(100000)
ps = set(s.primerange(2, 100001))
for n in range(100001):
# if (n in ps) != isprime(n): print n
assert (n in ps) == isprime(n)
assert isprime(179424673)
assert isprime(20678048681)
assert isprime(1968188556461)
assert isprime(2614941710599)
assert isprime(65635624165761929287)
assert isprime(1162566711635022452267983)
assert isprime(77123077103005189615466924501)
assert isprime(3991617775553178702574451996736229)
assert isprime(273952953553395851092382714516720001799)
assert isprime(int('''
531137992816767098689588206552468627329593117727031923199444138200403\
559860852242739162502265229285668889329486246501015346579337652707239\
409519978766587351943831270835393219031728127'''))
# Some Mersenne primes
assert isprime(2**61 - 1)
assert isprime(2**89 - 1)
assert isprime(2**607 - 1)
# (but not all Mersenne's are primes
assert not isprime(2**601 - 1)
# pseudoprimes
#-------------
# to some small bases
assert not isprime(2152302898747)
assert not isprime(3474749660383)
assert not isprime(341550071728321)
assert not isprime(3825123056546413051)
# passes the base set [2, 3, 7, 61, 24251]
assert not isprime(9188353522314541)
# large examples
assert not isprime(877777777777777777777777)
# conjectured psi_12 given at http://mathworld.wolfram.com/StrongPseudoprime.html
assert not isprime(318665857834031151167461)
# conjectured psi_17 given at http://mathworld.wolfram.com/StrongPseudoprime.html
assert not isprime(564132928021909221014087501701)
# Arnault's 1993 number; a factor of it is
# 400958216639499605418306452084546853005188166041132508774506\
# 204738003217070119624271622319159721973358216316508535816696\
# 9145233813917169287527980445796800452592031836601
assert not isprime(int('''
803837457453639491257079614341942108138837688287558145837488917522297\
427376533365218650233616396004545791504202360320876656996676098728404\
396540823292873879185086916685732826776177102938969773947016708230428\
687109997439976544144845341155872450633409279022275296229414984230688\
1685404326457534018329786111298960644845216191652872597534901'''))
# Arnault's 1995 number; can be factored as
# p1*(313*(p1 - 1) + 1)*(353*(p1 - 1) + 1) where p1 is
# 296744956686855105501541746429053327307719917998530433509950\
# 755312768387531717701995942385964281211880336647542183455624\
# 93168782883
assert not isprime(int('''
288714823805077121267142959713039399197760945927972270092651602419743\
230379915273311632898314463922594197780311092934965557841894944174093\
380561511397999942154241693397290542371100275104208013496673175515285\
922696291677532547504444585610194940420003990443211677661994962953925\
045269871932907037356403227370127845389912612030924484149472897688540\
6024976768122077071687938121709811322297802059565867'''))
sieve.extend(3000)
assert isprime(2819)
assert not isprime(2931)
raises(ValueError, lambda: isprime(2.0))
raises(ValueError, lambda: isprime(Float(2)))
def test_is_square():
assert [i for i in range(25) if is_square(i)] == [0, 1, 4, 9, 16]
# issue #17044
assert not is_square(60 ** 3)
assert not is_square(60 ** 5)
assert not is_square(84 ** 7)
assert not is_square(105 ** 9)
assert not is_square(120 ** 3)
def test_is_gaussianprime():
assert is_gaussian_prime(7*I)
assert is_gaussian_prime(7)
assert is_gaussian_prime(2 + 3*I)
assert not is_gaussian_prime(2 + 2*I)