File size: 9,348 Bytes
6a86ad5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
from math import gcd

from sympy.ntheory.generate import Sieve, sieve
from sympy.ntheory.primetest import (mr, _lucas_extrastrong_params, is_lucas_prp, is_square,
                                     is_strong_lucas_prp, is_extra_strong_lucas_prp,
                                     proth_test, isprime, is_euler_pseudoprime,
                                     is_gaussian_prime, is_fermat_pseudoprime, is_euler_jacobi_pseudoprime,
                                     MERSENNE_PRIME_EXPONENTS, _lucas_lehmer_primality_test,
                                     is_mersenne_prime)

from sympy.testing.pytest import slow, raises
from sympy.core.numbers import I, Float


def test_is_fermat_pseudoprime():
    assert is_fermat_pseudoprime(5, 1)
    assert is_fermat_pseudoprime(9, 1)


def test_euler_pseudoprimes():
    assert is_euler_pseudoprime(13, 1)
    assert is_euler_pseudoprime(15, 1)
    assert is_euler_pseudoprime(17, 6)
    assert is_euler_pseudoprime(101, 7)
    assert is_euler_pseudoprime(1009, 10)
    assert is_euler_pseudoprime(11287, 41)

    raises(ValueError, lambda: is_euler_pseudoprime(0, 4))
    raises(ValueError, lambda: is_euler_pseudoprime(3, 0))
    raises(ValueError, lambda: is_euler_pseudoprime(15, 6))

    # A006970
    euler_prp = [341, 561, 1105, 1729, 1905, 2047, 2465, 3277,
                 4033, 4681, 5461, 6601, 8321, 8481, 10261, 10585]
    for p in euler_prp:
        assert is_euler_pseudoprime(p, 2)

    # A048950
    euler_prp = [121, 703, 1729, 1891, 2821, 3281, 7381, 8401, 8911, 10585,
                 12403, 15457, 15841, 16531, 18721, 19345, 23521, 24661, 28009]
    for p in euler_prp:
        assert is_euler_pseudoprime(p, 3)

    # A033181
    absolute_euler_prp = [1729, 2465, 15841, 41041, 46657, 75361,
                          162401, 172081, 399001, 449065, 488881]
    for p in absolute_euler_prp:
        for a in range(2, p):
            if gcd(a, p) != 1:
                continue
            assert is_euler_pseudoprime(p, a)


def test_is_euler_jacobi_pseudoprime():
    assert is_euler_jacobi_pseudoprime(11, 1)
    assert is_euler_jacobi_pseudoprime(15, 1)


def test_lucas_extrastrong_params():
    assert _lucas_extrastrong_params(3) == (5, 3, 1)
    assert _lucas_extrastrong_params(5) == (12, 4, 1)
    assert _lucas_extrastrong_params(7) == (5, 3, 1)
    assert _lucas_extrastrong_params(9) == (0, 0, 0)
    assert _lucas_extrastrong_params(11) == (21, 5, 1)
    assert _lucas_extrastrong_params(59) == (32, 6, 1)
    assert _lucas_extrastrong_params(479) == (117, 11, 1)


def test_is_extra_strong_lucas_prp():
    assert is_extra_strong_lucas_prp(4) == False
    assert is_extra_strong_lucas_prp(989) == True
    assert is_extra_strong_lucas_prp(10877) == True
    assert is_extra_strong_lucas_prp(9) == False
    assert is_extra_strong_lucas_prp(16) == False
    assert is_extra_strong_lucas_prp(169) == False

@slow
def test_prps():
    oddcomposites = [n for n in range(1, 10**5) if
        n % 2 and not isprime(n)]
    # A checksum would be better.
    assert sum(oddcomposites) == 2045603465
    assert [n for n in oddcomposites if mr(n, [2])] == [
        2047, 3277, 4033, 4681, 8321, 15841, 29341, 42799, 49141,
        52633, 65281, 74665, 80581, 85489, 88357, 90751]
    assert [n for n in oddcomposites if mr(n, [3])] == [
        121, 703, 1891, 3281, 8401, 8911, 10585, 12403, 16531,
        18721, 19345, 23521, 31621, 44287, 47197, 55969, 63139,
        74593, 79003, 82513, 87913, 88573, 97567]
    assert [n for n in oddcomposites if mr(n, [325])] == [
        9, 25, 27, 49, 65, 81, 325, 341, 343, 697, 1141, 2059,
        2149, 3097, 3537, 4033, 4681, 4941, 5833, 6517, 7987, 8911,
        12403, 12913, 15043, 16021, 20017, 22261, 23221, 24649,
        24929, 31841, 35371, 38503, 43213, 44173, 47197, 50041,
        55909, 56033, 58969, 59089, 61337, 65441, 68823, 72641,
        76793, 78409, 85879]
    assert not any(mr(n, [9345883071009581737]) for n in oddcomposites)
    assert [n for n in oddcomposites if is_lucas_prp(n)] == [
        323, 377, 1159, 1829, 3827, 5459, 5777, 9071, 9179, 10877,
        11419, 11663, 13919, 14839, 16109, 16211, 18407, 18971,
        19043, 22499, 23407, 24569, 25199, 25877, 26069, 27323,
        32759, 34943, 35207, 39059, 39203, 39689, 40309, 44099,
        46979, 47879, 50183, 51983, 53663, 56279, 58519, 60377,
        63881, 69509, 72389, 73919, 75077, 77219, 79547, 79799,
        82983, 84419, 86063, 90287, 94667, 97019, 97439]
    assert [n for n in oddcomposites if is_strong_lucas_prp(n)] == [
        5459, 5777, 10877, 16109, 18971, 22499, 24569, 25199, 40309,
        58519, 75077, 97439]
    assert [n for n in oddcomposites if is_extra_strong_lucas_prp(n)
            ] == [
        989, 3239, 5777, 10877, 27971, 29681, 30739, 31631, 39059,
        72389, 73919, 75077]


def test_proth_test():
    # Proth number
    A080075 = [3, 5, 9, 13, 17, 25, 33, 41, 49, 57, 65,
               81, 97, 113, 129, 145, 161, 177, 193]
    # Proth prime
    A080076 = [3, 5, 13, 17, 41, 97, 113, 193]

    for n in range(200):
        if n in A080075:
            assert proth_test(n) == (n in A080076)
        else:
            raises(ValueError, lambda: proth_test(n))


def test_lucas_lehmer_primality_test():
    for p in sieve.primerange(3, 100):
        assert _lucas_lehmer_primality_test(p) == (p in MERSENNE_PRIME_EXPONENTS)


def test_is_mersenne_prime():
    assert is_mersenne_prime(-3) is False
    assert is_mersenne_prime(3) is True
    assert is_mersenne_prime(10) is False
    assert is_mersenne_prime(127) is True
    assert is_mersenne_prime(511) is False
    assert is_mersenne_prime(131071) is True
    assert is_mersenne_prime(2147483647) is True


def test_isprime():
    s = Sieve()
    s.extend(100000)
    ps = set(s.primerange(2, 100001))
    for n in range(100001):
        # if (n in ps) != isprime(n): print n
        assert (n in ps) == isprime(n)
    assert isprime(179424673)
    assert isprime(20678048681)
    assert isprime(1968188556461)
    assert isprime(2614941710599)
    assert isprime(65635624165761929287)
    assert isprime(1162566711635022452267983)
    assert isprime(77123077103005189615466924501)
    assert isprime(3991617775553178702574451996736229)
    assert isprime(273952953553395851092382714516720001799)
    assert isprime(int('''
531137992816767098689588206552468627329593117727031923199444138200403\
559860852242739162502265229285668889329486246501015346579337652707239\
409519978766587351943831270835393219031728127'''))

    # Some Mersenne primes
    assert isprime(2**61 - 1)
    assert isprime(2**89 - 1)
    assert isprime(2**607 - 1)
    # (but not all Mersenne's are primes
    assert not isprime(2**601 - 1)

    # pseudoprimes
    #-------------
    # to some small bases
    assert not isprime(2152302898747)
    assert not isprime(3474749660383)
    assert not isprime(341550071728321)
    assert not isprime(3825123056546413051)
    # passes the base set [2, 3, 7, 61, 24251]
    assert not isprime(9188353522314541)
    # large examples
    assert not isprime(877777777777777777777777)
    # conjectured psi_12 given at http://mathworld.wolfram.com/StrongPseudoprime.html
    assert not isprime(318665857834031151167461)
    # conjectured psi_17 given at http://mathworld.wolfram.com/StrongPseudoprime.html
    assert not isprime(564132928021909221014087501701)
    # Arnault's 1993 number; a factor of it is
    # 400958216639499605418306452084546853005188166041132508774506\
    # 204738003217070119624271622319159721973358216316508535816696\
    # 9145233813917169287527980445796800452592031836601
    assert not isprime(int('''
803837457453639491257079614341942108138837688287558145837488917522297\
427376533365218650233616396004545791504202360320876656996676098728404\
396540823292873879185086916685732826776177102938969773947016708230428\
687109997439976544144845341155872450633409279022275296229414984230688\
1685404326457534018329786111298960644845216191652872597534901'''))
    # Arnault's 1995 number; can be factored as
    # p1*(313*(p1 - 1) + 1)*(353*(p1 - 1) + 1) where p1 is
    # 296744956686855105501541746429053327307719917998530433509950\
    # 755312768387531717701995942385964281211880336647542183455624\
    # 93168782883
    assert not isprime(int('''
288714823805077121267142959713039399197760945927972270092651602419743\
230379915273311632898314463922594197780311092934965557841894944174093\
380561511397999942154241693397290542371100275104208013496673175515285\
922696291677532547504444585610194940420003990443211677661994962953925\
045269871932907037356403227370127845389912612030924484149472897688540\
6024976768122077071687938121709811322297802059565867'''))
    sieve.extend(3000)
    assert isprime(2819)
    assert not isprime(2931)
    raises(ValueError, lambda: isprime(2.0))
    raises(ValueError, lambda: isprime(Float(2)))


def test_is_square():
    assert [i for i in range(25) if is_square(i)] == [0, 1, 4, 9, 16]

    # issue #17044
    assert not is_square(60 ** 3)
    assert not is_square(60 ** 5)
    assert not is_square(84 ** 7)
    assert not is_square(105 ** 9)
    assert not is_square(120 ** 3)

def test_is_gaussianprime():
    assert is_gaussian_prime(7*I)
    assert is_gaussian_prime(7)
    assert is_gaussian_prime(2 + 3*I)
    assert not is_gaussian_prime(2 + 2*I)