rafech's picture
Update tasks/text.py
21d957b verified
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
router = APIRouter()
DESCRIPTION = "Random Baseline"
ROUTE = "/text"
@router.post(ROUTE, tags=["Text Task"],
description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
Current Model: Random Baseline
- Makes random predictions from the label space (0-7)
- Used as a baseline for comparison
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"]
test_dataset = dataset["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE CODE HERE
# Update the code below to replace the random baseline by your model inference within the inference pass where the energy consumption and emissions are tracked.
#--------------------------------------------------------------------------------------------
# Make random predictions (placeholder for actual model inference)
#true_labels = test_dataset["label"]
#predictions = [random.randint(0, 7) for _ in range(len(true_labels))]
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
from torch.utils.data import DataLoader, TensorDataset
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load model and tokenizer from Hugging Face Hub
MODEL_REPO = "ClimateDebunk/FineTunedDistilBert4SeqClass"
tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased', do_lower_case=True)
MAX_LENGTH = 365
model = AutoModelForSequenceClassification.from_pretrained(MODEL_REPO)
model.to(device)
model.eval() # Set to evaluation mode
# tokenize texts
test_encodings = tokenizer(test_dataset["quote"], padding='max_length', truncation=True, max_length=MAX_LENGTH, return_tensors="pt")
test_labels = torch.tensor(test_dataset["label"])
test_dataset_0 = TensorDataset(test_encodings["input_ids"], test_encodings["attention_mask"], test_labels)
test_loader = DataLoader(test_dataset_0, batch_size=16)
print('encoded')
predictions = []
with torch.no_grad():
for batch in test_loader:
input_ids, attention_mask, labels = [x.to(device) for x in batch]
outputs = model(input_ids, attention_mask=attention_mask)
preds = torch.argmax(outputs.logits, dim=1)
predictions.extend(preds.cpu().numpy())
print('here is a batch')
true_labels = test_dataset["label"]
#--------------------------------------------------------------------------------------------
# YOUR MODEL INFERENCE STOPS HERE
#--------------------------------------------------------------------------------------------
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(true_labels, predictions)
# Prepare results dictionary
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results