File size: 2,749 Bytes
f3c4d54
1519a8d
 
 
 
ad11ca2
 
1519a8d
 
 
 
 
 
f3c4d54
 
 
 
 
 
 
ad11ca2
1519a8d
f3c4d54
1519a8d
 
 
 
f3c4d54
 
 
 
 
 
 
 
1519a8d
f3c4d54
1519a8d
f3c4d54
1519a8d
 
0c35185
1519a8d
f3c4d54
 
 
 
 
1519a8d
 
 
 
 
 
 
 
 
 
 
 
f2d82ff
 
 
d5c5d2d
 
f2d82ff
1519a8d
 
 
 
 
 
 
 
 
 
f3c4d54
 
 
 
1519a8d
f3c4d54
 
 
 
 
1519a8d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import gradio as gr
import torch
import torchvision.transforms as transforms
import numpy as np

from PIL import Image
from model.flol import create_model


device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
#define some auxiliary functions
pil_to_tensor = transforms.ToTensor()

# Define a list of available weight files
weights_files = {
    "flolv2_UHDLL": './weights/flolv2_UHDLL.pt',
    "flolv2_other": './weights/flolv2_other.pt',  # Add other available weights here
}

# Initial model setup (without weights)
model = create_model()

def load_img(filename):
    img = Image.open(filename).convert("RGB")
    img_tensor = pil_to_tensor(img)
    return img_tensor

def process_img(image, weight_file):
    # Load the selected weight file
    if weight_file in weights_files:
        model_path = weights_files[weight_file]
        checkpoints = torch.load(model_path, map_location=device)
        model.load_state_dict(checkpoints['params'])
        model.to(device)

    img = np.array(image)
    img = img / 255.  # Normalize to [0, 1]
    img = img.astype(np.float32)
    y = torch.tensor(img).permute(2, 0, 1).unsqueeze(0).to(device)

    with torch.no_grad():
        x_hat = model(y)

    restored_img = x_hat.squeeze().permute(1, 2, 0).clamp_(0, 1).cpu().detach().numpy()
    restored_img = np.clip(restored_img, 0., 1.)

    restored_img = (restored_img * 255.0).round().astype(np.uint8)  # Convert to uint8
    return Image.fromarray(restored_img)


title = "Efficient Low-Light Enhancement ✏️🖼️ 🤗"
description = ''' ## [Efficient Low-Light Enhancement](https://github.com/cidautai/NAFourNet)
[Juan Carlos Benito](https://github.com/juaben)
Fundación Cidaut
> **Disclaimer:** please remember this is not a product, thus, you will notice some limitations.
**This demo expects an image with some degradations.**
Due to the GPU memory limitations, the app might crash if you feed a high-resolution image (2K, 4K).
<br>
'''

examples = [['images/425_UHD_LL.JPG'],
            ['images/674_UHD_LL.JPG'], 
            ['images/685_UHD_LL.JPG'], 
            ['images/945_UHD_LL.JPG'], 
            ['images/1778_UHD_LL.JPG'],
            ['images/1791_UHD_LL.JPG']]

css = """
    .image-frame img, .image-container img {
        width: auto;
        height: auto;
        max-width: none;
    }
"""

demo = gr.Interface(
    fn=process_img,
    inputs=[
        gr.Image(type='pil', label='input'),
        gr.Dropdown(choices=list(weights_files.keys()), label='Select Weight File', default="flolv2_UHDLL")
    ],
    outputs=[gr.Image(type='pil', label='output')],
    title=title,
    description=description,
    examples=examples,
    css=css
)

if __name__ == '__main__':
    demo.launch()