File size: 2,749 Bytes
f3c4d54 1519a8d ad11ca2 1519a8d f3c4d54 ad11ca2 1519a8d f3c4d54 1519a8d f3c4d54 1519a8d f3c4d54 1519a8d f3c4d54 1519a8d 0c35185 1519a8d f3c4d54 1519a8d f2d82ff d5c5d2d f2d82ff 1519a8d f3c4d54 1519a8d f3c4d54 1519a8d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
import gradio as gr
import torch
import torchvision.transforms as transforms
import numpy as np
from PIL import Image
from model.flol import create_model
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
#define some auxiliary functions
pil_to_tensor = transforms.ToTensor()
# Define a list of available weight files
weights_files = {
"flolv2_UHDLL": './weights/flolv2_UHDLL.pt',
"flolv2_other": './weights/flolv2_other.pt', # Add other available weights here
}
# Initial model setup (without weights)
model = create_model()
def load_img(filename):
img = Image.open(filename).convert("RGB")
img_tensor = pil_to_tensor(img)
return img_tensor
def process_img(image, weight_file):
# Load the selected weight file
if weight_file in weights_files:
model_path = weights_files[weight_file]
checkpoints = torch.load(model_path, map_location=device)
model.load_state_dict(checkpoints['params'])
model.to(device)
img = np.array(image)
img = img / 255. # Normalize to [0, 1]
img = img.astype(np.float32)
y = torch.tensor(img).permute(2, 0, 1).unsqueeze(0).to(device)
with torch.no_grad():
x_hat = model(y)
restored_img = x_hat.squeeze().permute(1, 2, 0).clamp_(0, 1).cpu().detach().numpy()
restored_img = np.clip(restored_img, 0., 1.)
restored_img = (restored_img * 255.0).round().astype(np.uint8) # Convert to uint8
return Image.fromarray(restored_img)
title = "Efficient Low-Light Enhancement ✏️🖼️ 🤗"
description = ''' ## [Efficient Low-Light Enhancement](https://github.com/cidautai/NAFourNet)
[Juan Carlos Benito](https://github.com/juaben)
Fundación Cidaut
> **Disclaimer:** please remember this is not a product, thus, you will notice some limitations.
**This demo expects an image with some degradations.**
Due to the GPU memory limitations, the app might crash if you feed a high-resolution image (2K, 4K).
<br>
'''
examples = [['images/425_UHD_LL.JPG'],
['images/674_UHD_LL.JPG'],
['images/685_UHD_LL.JPG'],
['images/945_UHD_LL.JPG'],
['images/1778_UHD_LL.JPG'],
['images/1791_UHD_LL.JPG']]
css = """
.image-frame img, .image-container img {
width: auto;
height: auto;
max-width: none;
}
"""
demo = gr.Interface(
fn=process_img,
inputs=[
gr.Image(type='pil', label='input'),
gr.Dropdown(choices=list(weights_files.keys()), label='Select Weight File', default="flolv2_UHDLL")
],
outputs=[gr.Image(type='pil', label='output')],
title=title,
description=description,
examples=examples,
css=css
)
if __name__ == '__main__':
demo.launch() |