Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
import torchvision.transforms as transforms
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
from archs.model import FourNet
|
8 |
+
|
9 |
+
|
10 |
+
opt = parse(path_opt)
|
11 |
+
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
12 |
+
#define some auxiliary functions
|
13 |
+
pil_to_tensor = transforms.ToTensor()
|
14 |
+
|
15 |
+
# define some parameters based on the run we want to make
|
16 |
+
|
17 |
+
model = FourNet(nf = 16)
|
18 |
+
|
19 |
+
checkpoints = torch.load('./models/NAFourNet16_LOLv2Real.pt', map_location=device)
|
20 |
+
|
21 |
+
model.load_state_dict(checkpoints['model_state_dict'])
|
22 |
+
|
23 |
+
model = model.to(device)
|
24 |
+
|
25 |
+
def load_img (filename):
|
26 |
+
img = Image.open(filename).convert("RGB")
|
27 |
+
img_tensor = pil_to_tensor(img)
|
28 |
+
return img_tensor
|
29 |
+
|
30 |
+
def process_img(image):
|
31 |
+
img = np.array(image)
|
32 |
+
img = img / 255.
|
33 |
+
img = img.astype(np.float32)
|
34 |
+
y = torch.tensor(img).permute(2,0,1).unsqueeze(0).to(device)
|
35 |
+
|
36 |
+
with torch.no_grad():
|
37 |
+
x_hat = model(y)
|
38 |
+
|
39 |
+
restored_img = x_hat.squeeze().permute(1,2,0).clamp_(0, 1).cpu().detach().numpy()
|
40 |
+
restored_img = np.clip(restored_img, 0. , 1.)
|
41 |
+
|
42 |
+
restored_img = (restored_img * 255.0).round().astype(np.uint8) # float32 to uint8
|
43 |
+
return Image.fromarray(restored_img) #(image, Image.fromarray(restored_img))
|
44 |
+
|
45 |
+
title = "Efficient Low-Light Enhancement ✏️🖼️ 🤗"
|
46 |
+
description = ''' ## [Efficient Low-Light Enhancement](https://github.com/cidautai/NAFourNet)
|
47 |
+
|
48 |
+
[Juan Carlos Benito](https://github.com/juaben)
|
49 |
+
|
50 |
+
Fundación Cidaut
|
51 |
+
|
52 |
+
|
53 |
+
> **Disclaimer:** please remember this is not a product, thus, you will notice some limitations.
|
54 |
+
**This demo expects an image with some degradations.**
|
55 |
+
Due to the GPU memory limitations, the app might crash if you feed a high-resolution image (2K, 4K).
|
56 |
+
|
57 |
+
<br>
|
58 |
+
'''
|
59 |
+
|
60 |
+
examples = [['examples/inputs/0010.png'],
|
61 |
+
['examples/inputs/0060.png'],
|
62 |
+
['examples/inputs/0075.png'],
|
63 |
+
["examples/inputs/0087.png"],
|
64 |
+
["examples/inputs/0088.png"]]
|
65 |
+
|
66 |
+
css = """
|
67 |
+
.image-frame img, .image-container img {
|
68 |
+
width: auto;
|
69 |
+
height: auto;
|
70 |
+
max-width: none;
|
71 |
+
}
|
72 |
+
"""
|
73 |
+
|
74 |
+
demo = gr.Interface(
|
75 |
+
fn = process_img,
|
76 |
+
inputs = [
|
77 |
+
gr.Image(type = 'pil', label = 'input')
|
78 |
+
],
|
79 |
+
outputs = [gr.Image(type='pil', label = 'output')],
|
80 |
+
title = title,
|
81 |
+
description = description,
|
82 |
+
examples = examples,
|
83 |
+
css = css
|
84 |
+
)
|
85 |
+
|
86 |
+
if __name__ == '__main__':
|
87 |
+
demo.launch()
|