Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import functools | |
try: | |
from .arch_util import EBlock | |
from .arch_util_freq import EBlock_freq | |
except: | |
from arch_util import EBlock | |
from arch_util_freq import EBlock_freq | |
class Network(nn.Module): | |
def __init__(self, img_channel=3, | |
width=16, | |
middle_blk_num_enc=1, | |
middle_blk_num_dec=1, | |
enc_blk_nums=[], | |
dec_blk_nums=[], | |
dilations = [1], | |
extra_depth_wise = False, | |
ksize = 5): | |
super(Network, self).__init__() | |
self.intro = nn.Conv2d(in_channels=img_channel, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1, | |
bias=True) | |
self.ending = nn.Conv2d(in_channels=width, out_channels=img_channel, kernel_size=3, padding=1, stride=1, groups=1, | |
bias=True) | |
self.encoders = nn.ModuleList() | |
self.decoders = nn.ModuleList() | |
self.middle_blks = nn.ModuleList() | |
self.ups = nn.ModuleList() | |
self.downs = nn.ModuleList() | |
chan = width | |
for num in enc_blk_nums: | |
self.encoders.append( | |
nn.Sequential( | |
*[EBlock_freq(chan, extra_depth_wise=extra_depth_wise) for _ in range(num)] | |
) | |
) | |
self.downs.append( | |
nn.Conv2d(chan, 2*chan, 2, 2) | |
) | |
chan = chan * 2 | |
self.middle_blks_enc = \ | |
nn.Sequential( | |
*[EBlock_freq(chan, extra_depth_wise=extra_depth_wise) for _ in range(middle_blk_num_enc)] | |
) | |
self.middle_blks_dec = \ | |
nn.Sequential( | |
*[EBlock(chan, dilations = dilations, extra_depth_wise=extra_depth_wise) for _ in range(middle_blk_num_dec)] | |
) | |
for num in dec_blk_nums: | |
self.ups.append( | |
nn.Sequential( | |
nn.Conv2d(chan, chan * 2, 1, bias=False), | |
nn.PixelShuffle(2) | |
) | |
) | |
chan = chan // 2 | |
self.decoders.append( | |
nn.Sequential( | |
*[EBlock(chan,dilations = dilations, extra_depth_wise=extra_depth_wise) for _ in range(num)] | |
) | |
) | |
self.padder_size = 2 ** len(self.encoders) | |
# self.facs = nn.ModuleList([nn.Identity(), nn.Identity(), | |
# nn.Identity(), | |
# nn.Identity()) | |
# self.kconv_deblur = KernelConv2D(ksize=ksize, act = True) | |
def forward(self, input): | |
_, _, H, W = input.shape | |
input = self.check_image_size(input) | |
x = self.intro(input) | |
# encs = [] | |
facs = [] | |
# i = 0 | |
for encoder, down in zip(self.encoders, self.downs): | |
x = encoder(x) | |
# x_fac = fac(x) | |
facs.append(x) | |
# print(i, x.shape) | |
# encs.append(x) | |
x = down(x) | |
# i += 1 | |
# we apply the encoder transforms | |
x_light = self.middle_blks_enc(x) | |
# calculate the fac at this level | |
# x_fac = self.facs[-1](x) | |
# facs.append(x_fac) | |
# apply the decoder transforms | |
x = self.middle_blks_dec(x_light) | |
# apply the fac transform over this step | |
x = x + x_light | |
# print('3', x.shape) | |
# apply the mask | |
# x = x * mask | |
# x = self.recon_trunk_light(x) | |
i = 0 | |
for decoder, up, fac_skip in zip(self.decoders, self.ups, facs[::-1]): | |
x = up(x) | |
if i == 2: # in the toppest decoder step | |
x = x + fac_skip | |
x = decoder(x) | |
else: | |
x = x + fac_skip | |
x = decoder(x) | |
i+=1 | |
x = self.ending(x) | |
x = x + input | |
return x[:, :, :H, :W] | |
def check_image_size(self, x): | |
_, _, h, w = x.size() | |
mod_pad_h = (self.padder_size - h % self.padder_size) % self.padder_size | |
mod_pad_w = (self.padder_size - w % self.padder_size) % self.padder_size | |
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), value = 0) | |
return x | |
if __name__ == '__main__': | |
img_channel = 3 | |
width = 32 | |
# enc_blks = [1, 1, 1, 3] | |
# middle_blk_num = 3 | |
# dec_blks = [2, 1, 1, 1] | |
enc_blks = [1, 2, 3] | |
middle_blk_num_enc = 2 | |
middle_blk_num_dec = 2 | |
dec_blks = [3, 1, 1] | |
residual_layers = None | |
dilations = [1, 4, 9] | |
extra_depth_wise = True | |
ksize = 5 | |
net = Network(img_channel=img_channel, | |
width=width, | |
middle_blk_num_enc=middle_blk_num_enc, | |
middle_blk_num_dec= middle_blk_num_dec, | |
enc_blk_nums=enc_blks, | |
dec_blk_nums=dec_blks, | |
dilations = dilations, | |
extra_depth_wise = extra_depth_wise, | |
ksize = ksize) | |
# NAF = NAFNet(img_channel=img_channel, width=width, middle_blk_num=middle_blk_num, | |
# enc_blk_nums=enc_blks, dec_blk_nums=dec_blks) | |
inp_shape = (3, 256, 256) | |
from ptflops import get_model_complexity_info | |
macs, params = get_model_complexity_info(net, inp_shape, verbose=False, print_per_layer_stat=False) | |
print(macs, params) | |
inp = torch.randn(1, 3, 256, 256) | |
out = net(inp) | |