DarkIR / archs /network.py
danifei's picture
Update archs/network.py
030fa5f verified
import torch
import torch.nn as nn
import torch.nn.functional as F
import functools
try:
from .arch_util import EBlock
from .arch_util_freq import EBlock_freq
except:
from arch_util import EBlock
from arch_util_freq import EBlock_freq
class Network(nn.Module):
def __init__(self, img_channel=3,
width=16,
middle_blk_num_enc=1,
middle_blk_num_dec=1,
enc_blk_nums=[],
dec_blk_nums=[],
dilations = [1],
extra_depth_wise = False,
ksize = 5):
super(Network, self).__init__()
self.intro = nn.Conv2d(in_channels=img_channel, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1,
bias=True)
self.ending = nn.Conv2d(in_channels=width, out_channels=img_channel, kernel_size=3, padding=1, stride=1, groups=1,
bias=True)
self.encoders = nn.ModuleList()
self.decoders = nn.ModuleList()
self.middle_blks = nn.ModuleList()
self.ups = nn.ModuleList()
self.downs = nn.ModuleList()
chan = width
for num in enc_blk_nums:
self.encoders.append(
nn.Sequential(
*[EBlock_freq(chan, extra_depth_wise=extra_depth_wise) for _ in range(num)]
)
)
self.downs.append(
nn.Conv2d(chan, 2*chan, 2, 2)
)
chan = chan * 2
self.middle_blks_enc = \
nn.Sequential(
*[EBlock_freq(chan, extra_depth_wise=extra_depth_wise) for _ in range(middle_blk_num_enc)]
)
self.middle_blks_dec = \
nn.Sequential(
*[EBlock(chan, dilations = dilations, extra_depth_wise=extra_depth_wise) for _ in range(middle_blk_num_dec)]
)
for num in dec_blk_nums:
self.ups.append(
nn.Sequential(
nn.Conv2d(chan, chan * 2, 1, bias=False),
nn.PixelShuffle(2)
)
)
chan = chan // 2
self.decoders.append(
nn.Sequential(
*[EBlock(chan,dilations = dilations, extra_depth_wise=extra_depth_wise) for _ in range(num)]
)
)
self.padder_size = 2 ** len(self.encoders)
# self.facs = nn.ModuleList([nn.Identity(), nn.Identity(),
# nn.Identity(),
# nn.Identity())
# self.kconv_deblur = KernelConv2D(ksize=ksize, act = True)
def forward(self, input):
_, _, H, W = input.shape
input = self.check_image_size(input)
x = self.intro(input)
# encs = []
facs = []
# i = 0
for encoder, down in zip(self.encoders, self.downs):
x = encoder(x)
# x_fac = fac(x)
facs.append(x)
# print(i, x.shape)
# encs.append(x)
x = down(x)
# i += 1
# we apply the encoder transforms
x_light = self.middle_blks_enc(x)
# calculate the fac at this level
# x_fac = self.facs[-1](x)
# facs.append(x_fac)
# apply the decoder transforms
x = self.middle_blks_dec(x_light)
# apply the fac transform over this step
x = x + x_light
# print('3', x.shape)
# apply the mask
# x = x * mask
# x = self.recon_trunk_light(x)
i = 0
for decoder, up, fac_skip in zip(self.decoders, self.ups, facs[::-1]):
x = up(x)
if i == 2: # in the toppest decoder step
x = x + fac_skip
x = decoder(x)
else:
x = x + fac_skip
x = decoder(x)
i+=1
x = self.ending(x)
x = x + input
return x[:, :, :H, :W]
def check_image_size(self, x):
_, _, h, w = x.size()
mod_pad_h = (self.padder_size - h % self.padder_size) % self.padder_size
mod_pad_w = (self.padder_size - w % self.padder_size) % self.padder_size
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), value = 0)
return x
if __name__ == '__main__':
img_channel = 3
width = 32
# enc_blks = [1, 1, 1, 3]
# middle_blk_num = 3
# dec_blks = [2, 1, 1, 1]
enc_blks = [1, 2, 3]
middle_blk_num_enc = 2
middle_blk_num_dec = 2
dec_blks = [3, 1, 1]
residual_layers = None
dilations = [1, 4, 9]
extra_depth_wise = True
ksize = 5
net = Network(img_channel=img_channel,
width=width,
middle_blk_num_enc=middle_blk_num_enc,
middle_blk_num_dec= middle_blk_num_dec,
enc_blk_nums=enc_blks,
dec_blk_nums=dec_blks,
dilations = dilations,
extra_depth_wise = extra_depth_wise,
ksize = ksize)
# NAF = NAFNet(img_channel=img_channel, width=width, middle_blk_num=middle_blk_num,
# enc_blk_nums=enc_blks, dec_blk_nums=dec_blks)
inp_shape = (3, 256, 256)
from ptflops import get_model_complexity_info
macs, params = get_model_complexity_info(net, inp_shape, verbose=False, print_per_layer_stat=False)
print(macs, params)
inp = torch.randn(1, 3, 256, 256)
out = net(inp)