danifei commited on
Commit
030fa5f
·
verified ·
1 Parent(s): 8dc35d7

Update archs/network.py

Browse files
Files changed (1) hide show
  1. archs/network.py +58 -30
archs/network.py CHANGED
@@ -3,10 +3,10 @@ import torch.nn as nn
3
  import torch.nn.functional as F
4
  import functools
5
  try:
6
- from .arch_util import EBlock, Attention_Light
7
  from .arch_util_freq import EBlock_freq
8
  except:
9
- from arch_util import EBlock, Attention_Light
10
  from arch_util_freq import EBlock_freq
11
 
12
 
@@ -14,11 +14,13 @@ class Network(nn.Module):
14
 
15
  def __init__(self, img_channel=3,
16
  width=16,
17
- middle_blk_num=1,
 
18
  enc_blk_nums=[],
19
  dec_blk_nums=[],
20
  dilations = [1],
21
- extra_depth_wise = False):
 
22
  super(Network, self).__init__()
23
 
24
  self.intro = nn.Conv2d(in_channels=img_channel, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1,
@@ -36,7 +38,7 @@ class Network(nn.Module):
36
  for num in enc_blk_nums:
37
  self.encoders.append(
38
  nn.Sequential(
39
- *[EBlock(chan, dilations = dilations, extra_depth_wise=extra_depth_wise) for _ in range(num)]
40
  )
41
  )
42
  self.downs.append(
@@ -44,9 +46,13 @@ class Network(nn.Module):
44
  )
45
  chan = chan * 2
46
 
47
- self.middle_blks = \
48
  nn.Sequential(
49
- *[EBlock(chan, dilations = dilations, extra_depth_wise=extra_depth_wise) for _ in range(middle_blk_num)]
 
 
 
 
50
  )
51
 
52
  for num in dec_blk_nums:
@@ -59,21 +65,16 @@ class Network(nn.Module):
59
  chan = chan // 2
60
  self.decoders.append(
61
  nn.Sequential(
62
- *[EBlock(chan, extra_depth_wise=extra_depth_wise) for _ in range(num)]
63
  )
64
  )
65
 
66
  self.padder_size = 2 ** len(self.encoders)
67
 
68
- #define the attention layers
69
-
70
- # self.recon_trunk_light = nn.Sequential(*[FBlock(c = chan * self.padder_size,
71
- # DW_Expand=2, FFN_Expand=2, dilations = dilations,
72
- # extra_depth_wise = False) for i in range(residual_layers)])
73
-
74
- # ResidualBlock_noBN_f = functools.partial(ResidualBlock_noBN, nf = width * self.padder_size)
75
- # self.recon_trunk_light = make_layer(ResidualBlock_noBN_f, residual_layers)
76
-
77
 
78
 
79
  def forward(self, input):
@@ -83,26 +84,43 @@ class Network(nn.Module):
83
  input = self.check_image_size(input)
84
  x = self.intro(input)
85
 
86
- encs = []
 
87
  # i = 0
88
  for encoder, down in zip(self.encoders, self.downs):
89
  x = encoder(x)
 
 
90
  # print(i, x.shape)
91
- encs.append(x)
92
  x = down(x)
93
  # i += 1
94
 
95
- x = self.middle_blks(x)
 
 
 
 
 
 
 
 
 
96
  # print('3', x.shape)
97
  # apply the mask
98
  # x = x * mask
99
 
100
  # x = self.recon_trunk_light(x)
101
-
102
- for decoder, up, enc_skip in zip(self.decoders, self.ups, encs[::-1]):
103
  x = up(x)
104
- x = x + enc_skip
105
- x = decoder(x)
 
 
 
 
 
106
 
107
  x = self.ending(x)
108
  x = x + input
@@ -121,19 +139,29 @@ if __name__ == '__main__':
121
  img_channel = 3
122
  width = 32
123
 
 
 
 
 
124
  enc_blks = [1, 2, 3]
125
- middle_blk_num = 3
 
126
  dec_blks = [3, 1, 1]
127
- residual_layers = 2
128
- dilations = [1, 4]
 
 
129
 
130
  net = Network(img_channel=img_channel,
131
  width=width,
132
- middle_blk_num=middle_blk_num,
 
133
  enc_blk_nums=enc_blks,
134
  dec_blk_nums=dec_blks,
135
- dilations = dilations)
136
-
 
 
137
  # NAF = NAFNet(img_channel=img_channel, width=width, middle_blk_num=middle_blk_num,
138
  # enc_blk_nums=enc_blks, dec_blk_nums=dec_blks)
139
 
 
3
  import torch.nn.functional as F
4
  import functools
5
  try:
6
+ from .arch_util import EBlock
7
  from .arch_util_freq import EBlock_freq
8
  except:
9
+ from arch_util import EBlock
10
  from arch_util_freq import EBlock_freq
11
 
12
 
 
14
 
15
  def __init__(self, img_channel=3,
16
  width=16,
17
+ middle_blk_num_enc=1,
18
+ middle_blk_num_dec=1,
19
  enc_blk_nums=[],
20
  dec_blk_nums=[],
21
  dilations = [1],
22
+ extra_depth_wise = False,
23
+ ksize = 5):
24
  super(Network, self).__init__()
25
 
26
  self.intro = nn.Conv2d(in_channels=img_channel, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1,
 
38
  for num in enc_blk_nums:
39
  self.encoders.append(
40
  nn.Sequential(
41
+ *[EBlock_freq(chan, extra_depth_wise=extra_depth_wise) for _ in range(num)]
42
  )
43
  )
44
  self.downs.append(
 
46
  )
47
  chan = chan * 2
48
 
49
+ self.middle_blks_enc = \
50
  nn.Sequential(
51
+ *[EBlock_freq(chan, extra_depth_wise=extra_depth_wise) for _ in range(middle_blk_num_enc)]
52
+ )
53
+ self.middle_blks_dec = \
54
+ nn.Sequential(
55
+ *[EBlock(chan, dilations = dilations, extra_depth_wise=extra_depth_wise) for _ in range(middle_blk_num_dec)]
56
  )
57
 
58
  for num in dec_blk_nums:
 
65
  chan = chan // 2
66
  self.decoders.append(
67
  nn.Sequential(
68
+ *[EBlock(chan,dilations = dilations, extra_depth_wise=extra_depth_wise) for _ in range(num)]
69
  )
70
  )
71
 
72
  self.padder_size = 2 ** len(self.encoders)
73
 
74
+ # self.facs = nn.ModuleList([nn.Identity(), nn.Identity(),
75
+ # nn.Identity(),
76
+ # nn.Identity())
77
+ # self.kconv_deblur = KernelConv2D(ksize=ksize, act = True)
 
 
 
 
 
78
 
79
 
80
  def forward(self, input):
 
84
  input = self.check_image_size(input)
85
  x = self.intro(input)
86
 
87
+ # encs = []
88
+ facs = []
89
  # i = 0
90
  for encoder, down in zip(self.encoders, self.downs):
91
  x = encoder(x)
92
+ # x_fac = fac(x)
93
+ facs.append(x)
94
  # print(i, x.shape)
95
+ # encs.append(x)
96
  x = down(x)
97
  # i += 1
98
 
99
+ # we apply the encoder transforms
100
+ x_light = self.middle_blks_enc(x)
101
+ # calculate the fac at this level
102
+ # x_fac = self.facs[-1](x)
103
+ # facs.append(x_fac)
104
+ # apply the decoder transforms
105
+ x = self.middle_blks_dec(x_light)
106
+ # apply the fac transform over this step
107
+ x = x + x_light
108
+
109
  # print('3', x.shape)
110
  # apply the mask
111
  # x = x * mask
112
 
113
  # x = self.recon_trunk_light(x)
114
+ i = 0
115
+ for decoder, up, fac_skip in zip(self.decoders, self.ups, facs[::-1]):
116
  x = up(x)
117
+ if i == 2: # in the toppest decoder step
118
+ x = x + fac_skip
119
+ x = decoder(x)
120
+ else:
121
+ x = x + fac_skip
122
+ x = decoder(x)
123
+ i+=1
124
 
125
  x = self.ending(x)
126
  x = x + input
 
139
  img_channel = 3
140
  width = 32
141
 
142
+ # enc_blks = [1, 1, 1, 3]
143
+ # middle_blk_num = 3
144
+ # dec_blks = [2, 1, 1, 1]
145
+
146
  enc_blks = [1, 2, 3]
147
+ middle_blk_num_enc = 2
148
+ middle_blk_num_dec = 2
149
  dec_blks = [3, 1, 1]
150
+ residual_layers = None
151
+ dilations = [1, 4, 9]
152
+ extra_depth_wise = True
153
+ ksize = 5
154
 
155
  net = Network(img_channel=img_channel,
156
  width=width,
157
+ middle_blk_num_enc=middle_blk_num_enc,
158
+ middle_blk_num_dec= middle_blk_num_dec,
159
  enc_blk_nums=enc_blks,
160
  dec_blk_nums=dec_blks,
161
+ dilations = dilations,
162
+ extra_depth_wise = extra_depth_wise,
163
+ ksize = ksize)
164
+
165
  # NAF = NAFNet(img_channel=img_channel, width=width, middle_blk_num=middle_blk_num,
166
  # enc_blk_nums=enc_blks, dec_blk_nums=dec_blks)
167