|
import os |
|
import gradio as gr |
|
import pandas as pd |
|
from apscheduler.schedulers.background import BackgroundScheduler |
|
|
|
from src.assets.text_content import TITLE, INTRODUCTION_TEXT, SINGLE_A100_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT |
|
from src.utils import restart_space, load_dataset_repo, make_clickable_model, make_clickable_score, extract_score_from_clickable |
|
from src.assets.css_html_js import custom_css |
|
|
|
|
|
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard" |
|
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset" |
|
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None) |
|
|
|
COLUMNS_MAPPING = { |
|
"model": "Model π€", |
|
"backend.name": "Backend π", |
|
"backend.torch_dtype": "Datatype π₯", |
|
"average": "Average H4 Score β¬οΈ", |
|
"forward.peak_memory(MB)": "Peak Memory (MB) β¬οΈ", |
|
"generate.throughput(tokens/s)": "Throughput (tokens/s) β¬οΈ", |
|
} |
|
COLUMNS_DATATYPES = ["markdown", "str", "str", "markdown", "number", "number"] |
|
SORTING_COLUMN = ["Throughput (tokens/s) β¬οΈ"] |
|
|
|
|
|
llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN) |
|
|
|
|
|
def get_benchmark_df(benchmark): |
|
if llm_perf_dataset_repo: |
|
llm_perf_dataset_repo.git_pull() |
|
|
|
|
|
bench_df = pd.read_csv( |
|
f"./llm-perf-dataset/reports/{benchmark}/inference_report.csv") |
|
|
|
scores_df = pd.read_csv( |
|
f"./llm-perf-dataset/reports/average_scores.csv") |
|
bench_df = bench_df.merge(scores_df, on="model", how="left") |
|
bench_df["average"] = bench_df["average"].apply( |
|
make_clickable_score) |
|
|
|
|
|
bench_df["model"] = bench_df["model"].apply(make_clickable_model) |
|
|
|
bench_df = bench_df[list(COLUMNS_MAPPING.keys())] |
|
|
|
bench_df.rename(columns=COLUMNS_MAPPING, inplace=True) |
|
|
|
bench_df.sort_values(by=SORTING_COLUMN, ascending=False, inplace=True) |
|
|
|
return bench_df |
|
|
|
|
|
def submit_query(text, backends, datatypes, threshold, raw_df): |
|
|
|
|
|
raw_df["Average H4 Score β¬οΈ"] = raw_df["Average H4 Score β¬οΈ"].apply( |
|
extract_score_from_clickable) |
|
filtered_df = raw_df[ |
|
raw_df["Model π€"].str.lower().str.contains(text.lower()) & |
|
raw_df["Backend π"].isin(backends) & |
|
raw_df["Datatype π₯"].isin(datatypes) & |
|
(raw_df["Average H4 Score β¬οΈ"] >= threshold) |
|
] |
|
filtered_df["Average H4 Score β¬οΈ"] = filtered_df["Average H4 Score β¬οΈ"].apply( |
|
make_clickable_score) |
|
|
|
return filtered_df |
|
|
|
|
|
|
|
demo = gr.Blocks(css=custom_css) |
|
with demo: |
|
gr.HTML(TITLE) |
|
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") |
|
|
|
|
|
with gr.Row(): |
|
search_bar = gr.Textbox( |
|
label="Model π€", |
|
info="Search for a model name", |
|
elem_id="search-bar", |
|
) |
|
backend_checkboxes = gr.CheckboxGroup( |
|
label="Backends π", |
|
choices=["pytorch", "onnxruntime"], |
|
value=["pytorch", "onnxruntime"], |
|
info="Select the backends", |
|
elem_id="backend-checkboxes", |
|
) |
|
datatype_checkboxes = gr.CheckboxGroup( |
|
label="Datatypes π₯", |
|
choices=["float32", "float16"], |
|
value=["float32", "float16"], |
|
info="Select the load datatypes", |
|
elem_id="datatype-checkboxes", |
|
) |
|
|
|
with gr.Row(): |
|
threshold_slider = gr.Slider( |
|
label="Average H4 Score π", |
|
info="Filter by minimum average H4 score", |
|
value=0.0, |
|
elem_id="threshold-slider", |
|
) |
|
|
|
with gr.Row(): |
|
submit_button = gr.Button( |
|
value="Submit π", |
|
info="Submit the filters", |
|
elem_id="submit-button", |
|
) |
|
|
|
|
|
with gr.Tabs(elem_classes="tab-buttons") as tabs: |
|
with gr.TabItem("π₯οΈ A100-80GB Benchmark ποΈ", elem_id="A100-benchmark", id=0): |
|
gr.HTML(SINGLE_A100_TEXT) |
|
|
|
single_A100_df = get_benchmark_df(benchmark="1xA100-80GB") |
|
|
|
single_A100_leaderboard = gr.components.Dataframe( |
|
value=single_A100_df, |
|
datatype=COLUMNS_DATATYPES, |
|
headers=list(COLUMNS_MAPPING.values()), |
|
elem_id="1xA100-table", |
|
) |
|
|
|
single_A100_for_search = gr.components.Dataframe( |
|
value=single_A100_df, |
|
datatype=COLUMNS_DATATYPES, |
|
headers=list(COLUMNS_MAPPING.values()), |
|
max_rows=None, |
|
visible=False, |
|
) |
|
|
|
|
|
submit_button.click( |
|
submit_query, |
|
[ |
|
search_bar, backend_checkboxes, datatype_checkboxes, threshold_slider, |
|
single_A100_for_search |
|
], |
|
[single_A100_leaderboard] |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Accordion("π Citation", open=False): |
|
citation_button = gr.Textbox( |
|
value=CITATION_BUTTON_TEXT, |
|
label=CITATION_BUTTON_LABEL, |
|
elem_id="citation-button", |
|
).style(show_copy_button=True) |
|
|
|
|
|
scheduler = BackgroundScheduler() |
|
scheduler.add_job(restart_space, "interval", seconds=3600, |
|
args=[LLM_PERF_LEADERBOARD_REPO, OPTIMUM_TOKEN]) |
|
scheduler.start() |
|
|
|
|
|
demo.queue(concurrency_count=40).launch() |
|
|