File size: 5,620 Bytes
c8763bd e747f4e c8763bd d262fb3 708b21b c8763bd dcfabfb e02ef37 930b7c1 e747f4e dcfabfb 67cbded 6640b32 efc3d5b d262fb3 c8763bd a18f8de e2c5bda efc3d5b 930b7c1 00642fb e747f4e 930b7c1 e747f4e 67cbded 930b7c1 efc3d5b 930b7c1 efc3d5b 930b7c1 efc3d5b 930b7c1 efc3d5b 930b7c1 c8763bd 930b7c1 c8763bd 6bc8c31 67cbded 6bc8c31 bf0a261 6bc8c31 67cbded 6bc8c31 8e785e9 d262fb3 c8763bd 67cbded 8e785e9 f208a6d e747f4e f208a6d 4e5004d e747f4e 4e5004d af2159b 4e5004d e747f4e 4e5004d 02f02af f208a6d e747f4e f208a6d 02f02af b075f8f 8e785e9 67cbded c8763bd 708b21b a18f8de 708b21b 8e785e9 708b21b a18f8de 708b21b a18f8de 8e785e9 a18f8de 35b1013 e747f4e 708b21b 9dc4521 00642fb d262fb3 c8763bd 5aacd58 c8763bd d262fb3 c8763bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import os
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from src.assets.text_content import TITLE, INTRODUCTION_TEXT, SINGLE_A100_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT
from src.utils import restart_space, load_dataset_repo, make_clickable_model, make_clickable_score, extract_score_from_clickable
from src.assets.css_html_js import custom_css
LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard"
LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset"
OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None)
COLUMNS_MAPPING = {
"model": "Model π€",
"backend.name": "Backend π",
"backend.torch_dtype": "Datatype π₯",
"average": "Average H4 Score β¬οΈ",
"forward.peak_memory(MB)": "Peak Memory (MB) β¬οΈ",
"generate.throughput(tokens/s)": "Throughput (tokens/s) β¬οΈ",
}
COLUMNS_DATATYPES = ["markdown", "str", "str", "markdown", "number", "number"]
SORTING_COLUMN = ["Throughput (tokens/s) β¬οΈ"]
llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN)
def get_benchmark_df(benchmark):
if llm_perf_dataset_repo:
llm_perf_dataset_repo.git_pull()
# load
bench_df = pd.read_csv(
f"./llm-perf-dataset/reports/{benchmark}/inference_report.csv")
scores_df = pd.read_csv(
f"./llm-perf-dataset/reports/average_scores.csv")
bench_df = bench_df.merge(scores_df, on="model", how="left")
bench_df["average"] = bench_df["average"].apply(
make_clickable_score)
# preprocess
bench_df["model"] = bench_df["model"].apply(make_clickable_model)
# filter
bench_df = bench_df[list(COLUMNS_MAPPING.keys())]
# rename
bench_df.rename(columns=COLUMNS_MAPPING, inplace=True)
# sort
bench_df.sort_values(by=SORTING_COLUMN, ascending=False, inplace=True)
return bench_df
def submit_query(text, backends, datatypes, threshold, raw_df):
# extract the average score (float) from the clickable score (clickable markdown)
raw_df["Average H4 Score β¬οΈ"] = raw_df["Average H4 Score β¬οΈ"].apply(
extract_score_from_clickable)
filtered_df = raw_df[
raw_df["Model π€"].str.lower().str.contains(text.lower()) &
raw_df["Backend π"].isin(backends) &
raw_df["Datatype π₯"].isin(datatypes) &
(raw_df["Average H4 Score β¬οΈ"] >= threshold)
]
filtered_df["Average H4 Score β¬οΈ"] = filtered_df["Average H4 Score β¬οΈ"].apply(
make_clickable_score)
return filtered_df
# Define demo interface
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
# controls
with gr.Row():
search_bar = gr.Textbox(
label="Model π€",
info="Search for a model name",
elem_id="search-bar",
)
backend_checkboxes = gr.CheckboxGroup(
label="Backends π",
choices=["pytorch", "onnxruntime"],
value=["pytorch", "onnxruntime"],
info="Select the backends",
elem_id="backend-checkboxes",
)
datatype_checkboxes = gr.CheckboxGroup(
label="Datatypes π₯",
choices=["float32", "float16"],
value=["float32", "float16"],
info="Select the load datatypes",
elem_id="datatype-checkboxes",
)
with gr.Row():
threshold_slider = gr.Slider(
label="Average H4 Score π",
info="Filter by minimum average H4 score",
value=0.0,
elem_id="threshold-slider",
)
with gr.Row():
submit_button = gr.Button(
value="Submit π",
info="Submit the filters",
elem_id="submit-button",
)
# leaderboard tabs
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π₯οΈ A100-80GB Benchmark ποΈ", elem_id="A100-benchmark", id=0):
gr.HTML(SINGLE_A100_TEXT)
single_A100_df = get_benchmark_df(benchmark="1xA100-80GB")
# Original leaderboard table
single_A100_leaderboard = gr.components.Dataframe(
value=single_A100_df,
datatype=COLUMNS_DATATYPES,
headers=list(COLUMNS_MAPPING.values()),
elem_id="1xA100-table",
)
# Dummy Leaderboard table for handling the case when the user uses backspace key
single_A100_for_search = gr.components.Dataframe(
value=single_A100_df,
datatype=COLUMNS_DATATYPES,
headers=list(COLUMNS_MAPPING.values()),
max_rows=None,
visible=False,
)
# Callbacks
submit_button.click(
submit_query,
[
search_bar, backend_checkboxes, datatype_checkboxes, threshold_slider,
single_A100_for_search
],
[single_A100_leaderboard]
)
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
).style(show_copy_button=True)
# Restart space every hour
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600,
args=[LLM_PERF_LEADERBOARD_REPO, OPTIMUM_TOKEN])
scheduler.start()
# Launch demo
demo.queue(concurrency_count=40).launch()
|