Spaces:
Running
on
Zero
Running
on
Zero
Upload 242 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- app.py +124 -0
- difpoint/.DS_Store +0 -0
- difpoint/configs/onnx_infer.yaml +105 -0
- difpoint/configs/onnx_mp_infer.yaml +99 -0
- difpoint/configs/trt_infer.yaml +105 -0
- difpoint/configs/trt_mp_infer.yaml +99 -0
- difpoint/croper.py +269 -0
- difpoint/dataset_process/.DS_Store +0 -0
- difpoint/dataset_process/__pycache__/audio.cpython-310.pyc +0 -0
- difpoint/dataset_process/__pycache__/audio.cpython-38.pyc +0 -0
- difpoint/dataset_process/audio.py +156 -0
- difpoint/dataset_process/wav2lip.py +75 -0
- difpoint/datasets/norm_info_d6.5_c8.5_vox1_train.npz +3 -0
- difpoint/inference.py +474 -0
- difpoint/model/__init__.py +6 -0
- difpoint/model/__pycache__/__init__.cpython-310.pyc +0 -0
- difpoint/model/__pycache__/__init__.cpython-38.pyc +0 -0
- difpoint/model/__pycache__/model.cpython-310.pyc +0 -0
- difpoint/model/__pycache__/model.cpython-38.pyc +0 -0
- difpoint/model/__pycache__/model_utils.cpython-310.pyc +0 -0
- difpoint/model/__pycache__/model_utils.cpython-38.pyc +0 -0
- difpoint/model/__pycache__/point_model.cpython-310.pyc +0 -0
- difpoint/model/__pycache__/point_model.cpython-38.pyc +0 -0
- difpoint/model/model.py +409 -0
- difpoint/model/model_utils.py +35 -0
- difpoint/model/point_model.py +38 -0
- difpoint/model/temporaltrans/__pycache__/temptrans.cpython-310.pyc +0 -0
- difpoint/model/temporaltrans/__pycache__/temptrans.cpython-38.pyc +0 -0
- difpoint/model/temporaltrans/__pycache__/transformer_utils.cpython-310.pyc +0 -0
- difpoint/model/temporaltrans/__pycache__/transformer_utils.cpython-38.pyc +0 -0
- difpoint/model/temporaltrans/pointnet_util.py +311 -0
- difpoint/model/temporaltrans/pointtransformerv2.py +250 -0
- difpoint/model/temporaltrans/temptrans.py +347 -0
- difpoint/model/temporaltrans/transformer_utils.py +146 -0
- difpoint/src/__init__.py +5 -0
- difpoint/src/__pycache__/__init__.cpython-310.pyc +0 -0
- difpoint/src/__pycache__/__init__.cpython-38.pyc +0 -0
- difpoint/src/__pycache__/live_portrait_pipeline.cpython-310.pyc +0 -0
- difpoint/src/__pycache__/live_portrait_wrapper.cpython-310.pyc +0 -0
- difpoint/src/config/__init__.py +0 -0
- difpoint/src/config/__pycache__/__init__.cpython-310.pyc +0 -0
- difpoint/src/config/__pycache__/argument_config.cpython-310.pyc +0 -0
- difpoint/src/config/__pycache__/base_config.cpython-310.pyc +0 -0
- difpoint/src/config/__pycache__/crop_config.cpython-310.pyc +0 -0
- difpoint/src/config/__pycache__/inference_config.cpython-310.pyc +0 -0
- difpoint/src/config/argument_config.py +48 -0
- difpoint/src/config/base_config.py +29 -0
- difpoint/src/config/crop_config.py +29 -0
- difpoint/src/config/inference_config.py +52 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
difpoint/src/utils/dependencies/insightface/data/images/t1.jpg filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, sys
|
2 |
+
import gradio as gr
|
3 |
+
from difpoint.inference import Inferencer
|
4 |
+
from TTS.api import TTS
|
5 |
+
import torch
|
6 |
+
import time
|
7 |
+
from flask import send_from_directory
|
8 |
+
from huggingface_hub import snapshot_download
|
9 |
+
import spaces
|
10 |
+
import tensorrt
|
11 |
+
import multiprocessing as mp
|
12 |
+
import pickle
|
13 |
+
mp.set_start_method('spawn', force=True)
|
14 |
+
|
15 |
+
|
16 |
+
repo_id = "ChaolongYang/KDTalker"
|
17 |
+
local_dir = "./downloaded_repo"
|
18 |
+
snapshot_download(repo_id=repo_id, local_dir=local_dir)
|
19 |
+
print("\nFiles downloaded:")
|
20 |
+
for root, dirs, files in os.walk(local_dir):
|
21 |
+
for file in files:
|
22 |
+
file_path = os.path.join(root, file)
|
23 |
+
print(file_path)
|
24 |
+
|
25 |
+
result_dir = "results"
|
26 |
+
def set_upload():
|
27 |
+
return "upload"
|
28 |
+
def set_microphone():
|
29 |
+
return "microphone"
|
30 |
+
def set_tts():
|
31 |
+
return "tts"
|
32 |
+
def create_kd_talker():
|
33 |
+
return Inferencer()
|
34 |
+
|
35 |
+
@spaces.GPU
|
36 |
+
def predict(prompt, upload_reference_audio, microphone_reference_audio, reference_audio_type):
|
37 |
+
global result_dir
|
38 |
+
output_file_path = os.path.join('./downloaded_repo/', 'output.wav')
|
39 |
+
if reference_audio_type == 'upload':
|
40 |
+
audio_file_pth = upload_reference_audio
|
41 |
+
elif reference_audio_type == 'microphone':
|
42 |
+
audio_file_pth = microphone_reference_audio
|
43 |
+
tts = TTS('tts_models/multilingual/multi-dataset/your_tts')
|
44 |
+
tts.tts_to_file(
|
45 |
+
text=prompt,
|
46 |
+
file_path=output_file_path,
|
47 |
+
speaker_wav=audio_file_pth,
|
48 |
+
language="en",
|
49 |
+
)
|
50 |
+
return gr.Audio(value=output_file_path, type='filepath')
|
51 |
+
|
52 |
+
@spaces.GPU
|
53 |
+
def generate(upload_driven_audio, tts_driven_audio, driven_audio_type, source_image, smoothed_pitch, smoothed_yaw, smoothed_roll, smoothed_t):
|
54 |
+
return Inferencer().generate_with_audio_img(upload_driven_audio, tts_driven_audio, driven_audio_type, source_image,
|
55 |
+
smoothed_pitch, smoothed_yaw, smoothed_roll, smoothed_t)
|
56 |
+
|
57 |
+
|
58 |
+
def main():
|
59 |
+
if torch.cuda.is_available():
|
60 |
+
device = "cuda"
|
61 |
+
else:
|
62 |
+
device = "cpu"
|
63 |
+
|
64 |
+
with gr.Blocks(analytics_enabled=False) as interface:
|
65 |
+
gr.Markdown(
|
66 |
+
"""
|
67 |
+
<div align='center'>
|
68 |
+
<h2> Unlock Pose Diversity: Accurate and Efficient Implicit Keypoint-based Spatiotemporal Diffusion for Audio-driven Talking Portrait </h2>
|
69 |
+
<div style="display: flex; justify-content: center; align-items: center; gap: 20px;">
|
70 |
+
<img src='https://newstatic.dukekunshan.edu.cn/mainsite/2021/08/07161629/large_dku-Logo-e1649298929570.png' alt='Logo' width='150'/>
|
71 |
+
<img src='https://www.xjtlu.edu.cn/wp-content/uploads/2023/12/7c52fd62e9cf26cb493faa7f91c2782.png' width='250'/>
|
72 |
+
</div>
|
73 |
+
</div>
|
74 |
+
"""
|
75 |
+
)
|
76 |
+
driven_audio_type = gr.Textbox(value="upload", visible=False)
|
77 |
+
reference_audio_type = gr.Textbox(value="upload", visible=False)
|
78 |
+
|
79 |
+
with gr.Row():
|
80 |
+
with gr.Column(variant="panel"):
|
81 |
+
with gr.Tabs(elem_id="kdtalker_source_image"):
|
82 |
+
with gr.TabItem("Upload image"):
|
83 |
+
source_image = gr.Image(label="Source image", sources="upload", type="filepath", scale=256)
|
84 |
+
|
85 |
+
with gr.Tabs(elem_id="kdtalker_driven_audio"):
|
86 |
+
with gr.TabItem("Upload"):
|
87 |
+
upload_driven_audio = gr.Audio(label="Upload audio", sources="upload", type="filepath")
|
88 |
+
upload_driven_audio.change(set_upload, outputs=driven_audio_type)
|
89 |
+
with gr.TabItem("TTS"):
|
90 |
+
upload_reference_audio = gr.Audio(label="Upload Reference Audio", sources="upload", type="filepath")
|
91 |
+
upload_reference_audio.change(set_upload, outputs=reference_audio_type)
|
92 |
+
microphone_reference_audio = gr.Audio(label="Recorded Reference Audio", sources="microphone", type="filepath")
|
93 |
+
microphone_reference_audio.change(set_microphone, outputs=reference_audio_type)
|
94 |
+
input_text = gr.Textbox(
|
95 |
+
label="Generating audio from text",
|
96 |
+
lines=5,
|
97 |
+
placeholder="please enter some text here, we generate the audio from text using @Coqui.ai TTS."
|
98 |
+
)
|
99 |
+
tts_button = gr.Button("Generate audio", elem_id="kdtalker_audio_generate", variant="primary")
|
100 |
+
tts_driven_audio = gr.Audio(label="Synthesised Audio", type="filepath")
|
101 |
+
tts_button.click(fn=predict, inputs=[input_text, upload_reference_audio, microphone_reference_audio, reference_audio_type], outputs=[tts_driven_audio])
|
102 |
+
tts_button.click(set_tts, outputs=driven_audio_type)
|
103 |
+
with gr.Column(variant="panel"):
|
104 |
+
gen_video = gr.Video(label="Generated video", format="mp4", width=256)
|
105 |
+
with gr.Tabs(elem_id="talker_checkbox"):
|
106 |
+
with gr.TabItem("KDTalker"):
|
107 |
+
smoothed_pitch = gr.Slider(minimum=0, maximum=1, step=0.1, label="Pitch", value=0.8)
|
108 |
+
smoothed_yaw = gr.Slider(minimum=0, maximum=1, step=0.1, label="Yaw", value=0.8)
|
109 |
+
smoothed_roll = gr.Slider(minimum=0, maximum=1, step=0.1, label="Roll", value=0.8)
|
110 |
+
smoothed_t = gr.Slider(minimum=0, maximum=1, step=0.1, label="T", value=0.8)
|
111 |
+
kd_submit = gr.Button("Generate", elem_id="kdtalker_generate", variant="primary")
|
112 |
+
kd_submit.click(
|
113 |
+
fn=generate,
|
114 |
+
inputs=[
|
115 |
+
upload_driven_audio, tts_driven_audio, driven_audio_type, source_image,
|
116 |
+
smoothed_pitch, smoothed_yaw, smoothed_roll, smoothed_t
|
117 |
+
],
|
118 |
+
outputs=[gen_video]
|
119 |
+
)
|
120 |
+
return interface
|
121 |
+
|
122 |
+
|
123 |
+
demo = main()
|
124 |
+
demo.queue().launch()
|
difpoint/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
difpoint/configs/onnx_infer.yaml
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
models:
|
2 |
+
warping_spade:
|
3 |
+
name: "WarpingSpadeModel"
|
4 |
+
predict_type: "ort"
|
5 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_onnx/warping_spade.onnx"
|
6 |
+
motion_extractor:
|
7 |
+
name: "MotionExtractorModel"
|
8 |
+
predict_type: "ort"
|
9 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_onnx/motion_extractor.onnx"
|
10 |
+
landmark:
|
11 |
+
name: "LandmarkModel"
|
12 |
+
predict_type: "ort"
|
13 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_onnx/landmark.onnx"
|
14 |
+
face_analysis:
|
15 |
+
name: "FaceAnalysisModel"
|
16 |
+
predict_type: "ort"
|
17 |
+
model_path:
|
18 |
+
- "./downloaded_repo/pretrained_weights/liveportrait_onnx/retinaface_det_static.onnx"
|
19 |
+
- "./downloaded_repo/pretrained_weights/liveportrait_onnx/face_2dpose_106_static.onnx"
|
20 |
+
app_feat_extractor:
|
21 |
+
name: "AppearanceFeatureExtractorModel"
|
22 |
+
predict_type: "ort"
|
23 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_onnx/appearance_feature_extractor.onnx"
|
24 |
+
stitching:
|
25 |
+
name: "StitchingModel"
|
26 |
+
predict_type: "ort"
|
27 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_onnx/stitching.onnx"
|
28 |
+
stitching_eye_retarget:
|
29 |
+
name: "StitchingModel"
|
30 |
+
predict_type: "ort"
|
31 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_onnx/stitching_eye.onnx"
|
32 |
+
stitching_lip_retarget:
|
33 |
+
name: "StitchingModel"
|
34 |
+
predict_type: "ort"
|
35 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_onnx/stitching_lip.onnx"
|
36 |
+
|
37 |
+
animal_models:
|
38 |
+
warping_spade:
|
39 |
+
name: "WarpingSpadeModel"
|
40 |
+
predict_type: "ort"
|
41 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_animal_onnx/warping_spade.onnx"
|
42 |
+
motion_extractor:
|
43 |
+
name: "MotionExtractorModel"
|
44 |
+
predict_type: "ort"
|
45 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_animal_onnx/motion_extractor.onnx"
|
46 |
+
app_feat_extractor:
|
47 |
+
name: "AppearanceFeatureExtractorModel"
|
48 |
+
predict_type: "ort"
|
49 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_animal_onnx/appearance_feature_extractor.onnx"
|
50 |
+
stitching:
|
51 |
+
name: "StitchingModel"
|
52 |
+
predict_type: "ort"
|
53 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_animal_onnx/stitching.onnx"
|
54 |
+
stitching_eye_retarget:
|
55 |
+
name: "StitchingModel"
|
56 |
+
predict_type: "ort"
|
57 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_animal_onnx/stitching_eye.onnx"
|
58 |
+
stitching_lip_retarget:
|
59 |
+
name: "StitchingModel"
|
60 |
+
predict_type: "ort"
|
61 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_animal_onnx/stitching_lip.onnx"
|
62 |
+
landmark:
|
63 |
+
name: "LandmarkModel"
|
64 |
+
predict_type: "ort"
|
65 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_onnx/landmark.onnx"
|
66 |
+
face_analysis:
|
67 |
+
name: "FaceAnalysisModel"
|
68 |
+
predict_type: "ort"
|
69 |
+
model_path:
|
70 |
+
- "./downloaded_repo/pretrained_weights/liveportrait_onnx/retinaface_det_static.onnx"
|
71 |
+
- "./downloaded_repo/pretrained_weights/liveportrait_onnx/face_2dpose_106_static.onnx"
|
72 |
+
|
73 |
+
crop_params:
|
74 |
+
src_dsize: 512
|
75 |
+
src_scale: 2.3
|
76 |
+
src_vx_ratio: 0.0
|
77 |
+
src_vy_ratio: -0.125
|
78 |
+
dri_scale: 2.2
|
79 |
+
dri_vx_ratio: 0.0
|
80 |
+
dri_vy_ratio: -0.1
|
81 |
+
|
82 |
+
|
83 |
+
infer_params:
|
84 |
+
flag_crop_driving_video: False
|
85 |
+
flag_normalize_lip: True
|
86 |
+
flag_source_video_eye_retargeting: False
|
87 |
+
flag_video_editing_head_rotation: False
|
88 |
+
flag_eye_retargeting: False
|
89 |
+
flag_lip_retargeting: False
|
90 |
+
flag_stitching: True
|
91 |
+
flag_relative_motion: True
|
92 |
+
flag_pasteback: True
|
93 |
+
flag_do_crop: True
|
94 |
+
flag_do_rot: True
|
95 |
+
|
96 |
+
# NOT EXPOERTED PARAMS
|
97 |
+
lip_normalize_threshold: 0.03 # threshold for flag_normalize_lip
|
98 |
+
source_video_eye_retargeting_threshold: 0.18 # threshold for eyes retargeting if the input is a source video
|
99 |
+
driving_smooth_observation_variance: 1e-7 # smooth strength scalar for the animated video when the input is a source video, the larger the number, the smoother the animated video; too much smoothness would result in loss of motion accuracy
|
100 |
+
anchor_frame: 0 # TO IMPLEMENT
|
101 |
+
mask_crop_path: "./assets/mask_template.png"
|
102 |
+
driving_multiplier: 1.0
|
103 |
+
|
104 |
+
source_max_dim: 1280 # the max dim of height and width of source image
|
105 |
+
source_division: 2 # make sure the height and width of source image can be divided by this number
|
difpoint/configs/onnx_mp_infer.yaml
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
models:
|
2 |
+
warping_spade:
|
3 |
+
name: "WarpingSpadeModel"
|
4 |
+
predict_type: "ort"
|
5 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_onnx/warping_spade.onnx"
|
6 |
+
motion_extractor:
|
7 |
+
name: "MotionExtractorModel"
|
8 |
+
predict_type: "ort"
|
9 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_onnx/motion_extractor.onnx"
|
10 |
+
landmark:
|
11 |
+
name: "LandmarkModel"
|
12 |
+
predict_type: "ort"
|
13 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_onnx/landmark.onnx"
|
14 |
+
face_analysis:
|
15 |
+
name: "MediaPipeFaceModel"
|
16 |
+
predict_type: "mp"
|
17 |
+
app_feat_extractor:
|
18 |
+
name: "AppearanceFeatureExtractorModel"
|
19 |
+
predict_type: "ort"
|
20 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_onnx/appearance_feature_extractor.onnx"
|
21 |
+
stitching:
|
22 |
+
name: "StitchingModel"
|
23 |
+
predict_type: "ort"
|
24 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_onnx/stitching.onnx"
|
25 |
+
stitching_eye_retarget:
|
26 |
+
name: "StitchingModel"
|
27 |
+
predict_type: "ort"
|
28 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_onnx/stitching_eye.onnx"
|
29 |
+
stitching_lip_retarget:
|
30 |
+
name: "StitchingModel"
|
31 |
+
predict_type: "ort"
|
32 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_onnx/stitching_lip.onnx"
|
33 |
+
|
34 |
+
animal_models:
|
35 |
+
warping_spade:
|
36 |
+
name: "WarpingSpadeModel"
|
37 |
+
predict_type: "ort"
|
38 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_animal_onnx/warping_spade.onnx"
|
39 |
+
motion_extractor:
|
40 |
+
name: "MotionExtractorModel"
|
41 |
+
predict_type: "ort"
|
42 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_animal_onnx/motion_extractor.onnx"
|
43 |
+
app_feat_extractor:
|
44 |
+
name: "AppearanceFeatureExtractorModel"
|
45 |
+
predict_type: "ort"
|
46 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_animal_onnx/appearance_feature_extractor.onnx"
|
47 |
+
stitching:
|
48 |
+
name: "StitchingModel"
|
49 |
+
predict_type: "ort"
|
50 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_animal_onnx/stitching.onnx"
|
51 |
+
stitching_eye_retarget:
|
52 |
+
name: "StitchingModel"
|
53 |
+
predict_type: "ort"
|
54 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_animal_onnx/stitching_eye.onnx"
|
55 |
+
stitching_lip_retarget:
|
56 |
+
name: "StitchingModel"
|
57 |
+
predict_type: "ort"
|
58 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_animal_onnx/stitching_lip.onnx"
|
59 |
+
landmark:
|
60 |
+
name: "LandmarkModel"
|
61 |
+
predict_type: "ort"
|
62 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_onnx/landmark.onnx"
|
63 |
+
face_analysis:
|
64 |
+
name: "MediaPipeFaceModel"
|
65 |
+
predict_type: "mp"
|
66 |
+
|
67 |
+
crop_params:
|
68 |
+
src_dsize: 512
|
69 |
+
src_scale: 2.3
|
70 |
+
src_vx_ratio: 0.0
|
71 |
+
src_vy_ratio: -0.125
|
72 |
+
dri_scale: 2.2
|
73 |
+
dri_vx_ratio: 0.0
|
74 |
+
dri_vy_ratio: -0.1
|
75 |
+
|
76 |
+
|
77 |
+
infer_params:
|
78 |
+
flag_crop_driving_video: False
|
79 |
+
flag_normalize_lip: True
|
80 |
+
flag_source_video_eye_retargeting: False
|
81 |
+
flag_video_editing_head_rotation: False
|
82 |
+
flag_eye_retargeting: False
|
83 |
+
flag_lip_retargeting: False
|
84 |
+
flag_stitching: True
|
85 |
+
flag_relative_motion: True
|
86 |
+
flag_pasteback: True
|
87 |
+
flag_do_crop: True
|
88 |
+
flag_do_rot: True
|
89 |
+
|
90 |
+
# NOT EXPOERTED PARAMS
|
91 |
+
lip_normalize_threshold: 0.03 # threshold for flag_normalize_lip
|
92 |
+
source_video_eye_retargeting_threshold: 0.18 # threshold for eyes retargeting if the input is a source video
|
93 |
+
driving_smooth_observation_variance: 1e-7 # smooth strength scalar for the animated video when the input is a source video, the larger the number, the smoother the animated video; too much smoothness would result in loss of motion accuracy
|
94 |
+
anchor_frame: 0 # TO IMPLEMENT
|
95 |
+
mask_crop_path: "./assets/mask_template.png"
|
96 |
+
driving_multiplier: 1.0
|
97 |
+
|
98 |
+
source_max_dim: 1280 # the max dim of height and width of source image
|
99 |
+
source_division: 2 # make sure the height and width of source image can be divided by this number
|
difpoint/configs/trt_infer.yaml
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
models:
|
2 |
+
warping_spade:
|
3 |
+
name: "WarpingSpadeModel"
|
4 |
+
predict_type: "trt"
|
5 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_onnx/warping_spade-fix.trt"
|
6 |
+
motion_extractor:
|
7 |
+
name: "MotionExtractorModel"
|
8 |
+
predict_type: "trt"
|
9 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_onnx/motion_extractor.trt"
|
10 |
+
landmark:
|
11 |
+
name: "LandmarkModel"
|
12 |
+
predict_type: "trt"
|
13 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_onnx/landmark.trt"
|
14 |
+
face_analysis:
|
15 |
+
name: "FaceAnalysisModel"
|
16 |
+
predict_type: "trt"
|
17 |
+
model_path:
|
18 |
+
- "./downloaded_repo/pretrained_weights/liveportrait_onnx/retinaface_det_static.trt"
|
19 |
+
- "./downloaded_repo/pretrained_weights/liveportrait_onnx/face_2dpose_106_static.trt"
|
20 |
+
app_feat_extractor:
|
21 |
+
name: "AppearanceFeatureExtractorModel"
|
22 |
+
predict_type: "trt"
|
23 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_onnx/appearance_feature_extractor.trt"
|
24 |
+
stitching:
|
25 |
+
name: "StitchingModel"
|
26 |
+
predict_type: "trt"
|
27 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_onnx/stitching.trt"
|
28 |
+
stitching_eye_retarget:
|
29 |
+
name: "StitchingModel"
|
30 |
+
predict_type: "trt"
|
31 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_onnx/stitching_eye.trt"
|
32 |
+
stitching_lip_retarget:
|
33 |
+
name: "StitchingModel"
|
34 |
+
predict_type: "trt"
|
35 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_onnx/stitching_lip.trt"
|
36 |
+
|
37 |
+
animal_models:
|
38 |
+
warping_spade:
|
39 |
+
name: "WarpingSpadeModel"
|
40 |
+
predict_type: "trt"
|
41 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_animal_onnx/warping_spade-fix.trt"
|
42 |
+
motion_extractor:
|
43 |
+
name: "MotionExtractorModel"
|
44 |
+
predict_type: "trt"
|
45 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_animal_onnx/motion_extractor.trt"
|
46 |
+
app_feat_extractor:
|
47 |
+
name: "AppearanceFeatureExtractorModel"
|
48 |
+
predict_type: "trt"
|
49 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_animal_onnx/appearance_feature_extractor.trt"
|
50 |
+
stitching:
|
51 |
+
name: "StitchingModel"
|
52 |
+
predict_type: "trt"
|
53 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_animal_onnx/stitching.trt"
|
54 |
+
stitching_eye_retarget:
|
55 |
+
name: "StitchingModel"
|
56 |
+
predict_type: "trt"
|
57 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_animal_onnx/stitching_eye.trt"
|
58 |
+
stitching_lip_retarget:
|
59 |
+
name: "StitchingModel"
|
60 |
+
predict_type: "trt"
|
61 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_animal_onnx/stitching_lip.trt"
|
62 |
+
landmark:
|
63 |
+
name: "LandmarkModel"
|
64 |
+
predict_type: "trt"
|
65 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_onnx/landmark.trt"
|
66 |
+
face_analysis:
|
67 |
+
name: "FaceAnalysisModel"
|
68 |
+
predict_type: "trt"
|
69 |
+
model_path:
|
70 |
+
- "./downloaded_repo/pretrained_weights/liveportrait_onnx/retinaface_det_static.trt"
|
71 |
+
- "./downloaded_repo/pretrained_weights/liveportrait_onnx/face_2dpose_106_static.trt"
|
72 |
+
|
73 |
+
crop_params:
|
74 |
+
src_dsize: 512
|
75 |
+
src_scale: 2.3
|
76 |
+
src_vx_ratio: 0.0
|
77 |
+
src_vy_ratio: -0.125
|
78 |
+
dri_scale: 2.2
|
79 |
+
dri_vx_ratio: 0.0
|
80 |
+
dri_vy_ratio: -0.1
|
81 |
+
|
82 |
+
|
83 |
+
infer_params:
|
84 |
+
flag_crop_driving_video: False
|
85 |
+
flag_normalize_lip: False
|
86 |
+
flag_source_video_eye_retargeting: False
|
87 |
+
flag_video_editing_head_rotation: False
|
88 |
+
flag_eye_retargeting: False
|
89 |
+
flag_lip_retargeting: False
|
90 |
+
flag_stitching: True
|
91 |
+
flag_relative_motion: True
|
92 |
+
flag_pasteback: True
|
93 |
+
flag_do_crop: True
|
94 |
+
flag_do_rot: True
|
95 |
+
|
96 |
+
# NOT EXPOERTED PARAMS
|
97 |
+
lip_normalize_threshold: 0.03 # threshold for flag_normalize_lip
|
98 |
+
source_video_eye_retargeting_threshold: 0.18 # threshold for eyes retargeting if the input is a source video
|
99 |
+
driving_smooth_observation_variance: 1e-7 # smooth strength scalar for the animated video when the input is a source video, the larger the number, the smoother the animated video; too much smoothness would result in loss of motion accuracy
|
100 |
+
anchor_frame: 0 # TO IMPLEMENT
|
101 |
+
mask_crop_path: "./assets/mask_template.png"
|
102 |
+
driving_multiplier: 1.0
|
103 |
+
|
104 |
+
source_max_dim: 1280 # the max dim of height and width of source image
|
105 |
+
source_division: 2 # make sure the height and width of source image can be divided by this number
|
difpoint/configs/trt_mp_infer.yaml
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
models:
|
2 |
+
warping_spade:
|
3 |
+
name: "WarpingSpadeModel"
|
4 |
+
predict_type: "trt"
|
5 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_onnx/warping_spade-fix.trt"
|
6 |
+
motion_extractor:
|
7 |
+
name: "MotionExtractorModel"
|
8 |
+
predict_type: "trt"
|
9 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_onnx/motion_extractor.trt"
|
10 |
+
landmark:
|
11 |
+
name: "LandmarkModel"
|
12 |
+
predict_type: "trt"
|
13 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_onnx/landmark.trt"
|
14 |
+
face_analysis:
|
15 |
+
name: "MediaPipeFaceModel"
|
16 |
+
predict_type: "mp"
|
17 |
+
app_feat_extractor:
|
18 |
+
name: "AppearanceFeatureExtractorModel"
|
19 |
+
predict_type: "trt"
|
20 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_onnx/appearance_feature_extractor.trt"
|
21 |
+
stitching:
|
22 |
+
name: "StitchingModel"
|
23 |
+
predict_type: "trt"
|
24 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_onnx/stitching.trt"
|
25 |
+
stitching_eye_retarget:
|
26 |
+
name: "StitchingModel"
|
27 |
+
predict_type: "trt"
|
28 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_onnx/stitching_eye.trt"
|
29 |
+
stitching_lip_retarget:
|
30 |
+
name: "StitchingModel"
|
31 |
+
predict_type: "trt"
|
32 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_onnx/stitching_lip.trt"
|
33 |
+
|
34 |
+
animal_models:
|
35 |
+
warping_spade:
|
36 |
+
name: "WarpingSpadeModel"
|
37 |
+
predict_type: "trt"
|
38 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_animal_onnx/warping_spade-fix.trt"
|
39 |
+
motion_extractor:
|
40 |
+
name: "MotionExtractorModel"
|
41 |
+
predict_type: "trt"
|
42 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_animal_onnx/motion_extractor.trt"
|
43 |
+
app_feat_extractor:
|
44 |
+
name: "AppearanceFeatureExtractorModel"
|
45 |
+
predict_type: "trt"
|
46 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_animal_onnx/appearance_feature_extractor.trt"
|
47 |
+
stitching:
|
48 |
+
name: "StitchingModel"
|
49 |
+
predict_type: "trt"
|
50 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_animal_onnx/stitching.trt"
|
51 |
+
stitching_eye_retarget:
|
52 |
+
name: "StitchingModel"
|
53 |
+
predict_type: "trt"
|
54 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_animal_onnx/stitching_eye.trt"
|
55 |
+
stitching_lip_retarget:
|
56 |
+
name: "StitchingModel"
|
57 |
+
predict_type: "trt"
|
58 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_animal_onnx/stitching_lip.trt"
|
59 |
+
landmark:
|
60 |
+
name: "LandmarkModel"
|
61 |
+
predict_type: "trt"
|
62 |
+
model_path: "./downloaded_repo/pretrained_weights/liveportrait_onnx/landmark.trt"
|
63 |
+
face_analysis:
|
64 |
+
name: "MediaPipeFaceModel"
|
65 |
+
predict_type: "mp"
|
66 |
+
|
67 |
+
crop_params:
|
68 |
+
src_dsize: 512
|
69 |
+
src_scale: 2.0
|
70 |
+
src_vx_ratio: 0.0
|
71 |
+
src_vy_ratio: -0.125
|
72 |
+
dri_scale: 2.2
|
73 |
+
dri_vx_ratio: 0.0
|
74 |
+
dri_vy_ratio: -0.1
|
75 |
+
|
76 |
+
|
77 |
+
infer_params:
|
78 |
+
flag_crop_driving_video: False
|
79 |
+
flag_normalize_lip: False
|
80 |
+
flag_source_video_eye_retargeting: False
|
81 |
+
flag_video_editing_head_rotation: False
|
82 |
+
flag_eye_retargeting: False
|
83 |
+
flag_lip_retargeting: False
|
84 |
+
flag_stitching: False
|
85 |
+
flag_relative_motion: False
|
86 |
+
flag_pasteback: False
|
87 |
+
flag_do_crop: False
|
88 |
+
flag_do_rot: False
|
89 |
+
|
90 |
+
# NOT EXPOERTED PARAMS
|
91 |
+
lip_normalize_threshold: 0.03 # threshold for flag_normalize_lip
|
92 |
+
source_video_eye_retargeting_threshold: 0.18 # threshold for eyes retargeting if the input is a source video
|
93 |
+
driving_smooth_observation_variance: 1e-7 # smooth strength scalar for the animated video when the input is a source video, the larger the number, the smoother the animated video; too much smoothness would result in loss of motion accuracy
|
94 |
+
anchor_frame: 0 # TO IMPLEMENT
|
95 |
+
mask_crop_path: "./assets/mask_template.png"
|
96 |
+
driving_multiplier: 1.0
|
97 |
+
|
98 |
+
source_max_dim: 1280 # the max dim of height and width of source image
|
99 |
+
source_division: 2 # make sure the height and width of source image can be divided by this number
|
difpoint/croper.py
ADDED
@@ -0,0 +1,269 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import time
|
4 |
+
import glob
|
5 |
+
import argparse
|
6 |
+
import scipy
|
7 |
+
import numpy as np
|
8 |
+
from PIL import Image
|
9 |
+
from tqdm import tqdm
|
10 |
+
from itertools import cycle
|
11 |
+
|
12 |
+
|
13 |
+
"""
|
14 |
+
brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset)
|
15 |
+
author: lzhbrian (https://lzhbrian.me)
|
16 |
+
date: 2020.1.5
|
17 |
+
note: code is heavily borrowed from
|
18 |
+
https://github.com/NVlabs/ffhq-dataset
|
19 |
+
http://dlib.net/face_landmark_detection.py.html
|
20 |
+
requirements:
|
21 |
+
apt install cmake
|
22 |
+
conda install Pillow numpy scipy
|
23 |
+
pip install dlib
|
24 |
+
# download face landmark model from:
|
25 |
+
# http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
|
26 |
+
"""
|
27 |
+
|
28 |
+
import numpy as np
|
29 |
+
from PIL import Image
|
30 |
+
import dlib
|
31 |
+
|
32 |
+
|
33 |
+
class Croper:
|
34 |
+
|
35 |
+
def __init__(self, path_of_lm):
|
36 |
+
# download model from: http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
|
37 |
+
self.predictor = dlib.shape_predictor(path_of_lm)
|
38 |
+
|
39 |
+
def get_landmark(self, img_np):
|
40 |
+
"""get landmark with dlib
|
41 |
+
:return: np.array shape=(68, 2)
|
42 |
+
"""
|
43 |
+
detector = dlib.get_frontal_face_detector()
|
44 |
+
dets = detector(img_np, 1)
|
45 |
+
# print("Number of faces detected: {}".format(len(dets)))
|
46 |
+
# for k, d in enumerate(dets):
|
47 |
+
if len(dets) == 0:
|
48 |
+
return None
|
49 |
+
d = dets[0]
|
50 |
+
# Get the landmarks/parts for the face in box d.
|
51 |
+
shape = self.predictor(img_np, d)
|
52 |
+
# print("Part 0: {}, Part 1: {} ...".format(shape.part(0), shape.part(1)))
|
53 |
+
t = list(shape.parts())
|
54 |
+
a = []
|
55 |
+
for tt in t:
|
56 |
+
a.append([tt.x, tt.y])
|
57 |
+
lm = np.array(a)
|
58 |
+
# lm is a shape=(68,2) np.array
|
59 |
+
return lm
|
60 |
+
|
61 |
+
def align_face(self, img, lm, output_size=1024):
|
62 |
+
"""
|
63 |
+
:param filepath: str
|
64 |
+
:return: PIL Image
|
65 |
+
"""
|
66 |
+
lm_chin = lm[0: 17] # left-right
|
67 |
+
lm_eyebrow_left = lm[17: 22] # left-right
|
68 |
+
lm_eyebrow_right = lm[22: 27] # left-right
|
69 |
+
lm_nose = lm[27: 31] # top-down
|
70 |
+
lm_nostrils = lm[31: 36] # top-down
|
71 |
+
lm_eye_left = lm[36: 42] # left-clockwise
|
72 |
+
lm_eye_right = lm[42: 48] # left-clockwise
|
73 |
+
lm_mouth_outer = lm[48: 60] # left-clockwise
|
74 |
+
lm_mouth_inner = lm[60: 68] # left-clockwise
|
75 |
+
|
76 |
+
# Calculate auxiliary vectors.
|
77 |
+
eye_left = np.mean(lm_eye_left, axis=0)
|
78 |
+
eye_right = np.mean(lm_eye_right, axis=0)
|
79 |
+
eye_avg = (eye_left + eye_right) * 0.5
|
80 |
+
eye_to_eye = eye_right - eye_left
|
81 |
+
mouth_left = lm_mouth_outer[0]
|
82 |
+
mouth_right = lm_mouth_outer[6]
|
83 |
+
mouth_avg = (mouth_left + mouth_right) * 0.5
|
84 |
+
eye_to_mouth = mouth_avg - eye_avg
|
85 |
+
|
86 |
+
# Choose oriented crop rectangle.
|
87 |
+
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] # Addition of binocular difference and double mouth difference
|
88 |
+
x /= np.hypot(*x) # hypot函数计算直角三角形的斜边长,用斜边长对三角形两条直边做归一化
|
89 |
+
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) # 双眼差和眼嘴差,选较大的作为基准尺度
|
90 |
+
y = np.flipud(x) * [-1, 1]
|
91 |
+
c = eye_avg + eye_to_mouth * 0.1
|
92 |
+
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) # 定义四边形,以面部基准位置为中心上下左右平移得到四个顶点
|
93 |
+
qsize = np.hypot(*x) * 2 # 定义四边形的大小(边长),为基准尺度的2倍
|
94 |
+
|
95 |
+
# Shrink.
|
96 |
+
# 如果计算出的四边形太大了,就按比例缩小它
|
97 |
+
shrink = int(np.floor(qsize / output_size * 0.5))
|
98 |
+
if shrink > 1:
|
99 |
+
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
|
100 |
+
img = img.resize(rsize, Image.ANTIALIAS)
|
101 |
+
quad /= shrink
|
102 |
+
qsize /= shrink
|
103 |
+
else:
|
104 |
+
rsize = (int(np.rint(float(img.size[0]))), int(np.rint(float(img.size[1]))))
|
105 |
+
|
106 |
+
# Crop.
|
107 |
+
border = max(int(np.rint(qsize * 0.1)), 3)
|
108 |
+
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
|
109 |
+
int(np.ceil(max(quad[:, 1]))))
|
110 |
+
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]),
|
111 |
+
min(crop[3] + border, img.size[1]))
|
112 |
+
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
|
113 |
+
# img = img.crop(crop)
|
114 |
+
quad -= crop[0:2]
|
115 |
+
|
116 |
+
# Pad.
|
117 |
+
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
|
118 |
+
int(np.ceil(max(quad[:, 1]))))
|
119 |
+
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0),
|
120 |
+
max(pad[3] - img.size[1] + border, 0))
|
121 |
+
# if enable_padding and max(pad) > border - 4:
|
122 |
+
# pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
|
123 |
+
# img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
|
124 |
+
# h, w, _ = img.shape
|
125 |
+
# y, x, _ = np.ogrid[:h, :w, :1]
|
126 |
+
# mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),
|
127 |
+
# 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]))
|
128 |
+
# blur = qsize * 0.02
|
129 |
+
# img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
|
130 |
+
# img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
|
131 |
+
# img = Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
|
132 |
+
# quad += pad[:2]
|
133 |
+
|
134 |
+
# Transform.
|
135 |
+
quad = (quad + 0.5).flatten()
|
136 |
+
lx = max(min(quad[0], quad[2]), 0)
|
137 |
+
ly = max(min(quad[1], quad[7]), 0)
|
138 |
+
rx = min(max(quad[4], quad[6]), img.size[0])
|
139 |
+
ry = min(max(quad[3], quad[5]), img.size[0])
|
140 |
+
# img = img.transform((transform_size, transform_size), Image.QUAD, (quad + 0.5).flatten(),
|
141 |
+
# Image.BILINEAR)
|
142 |
+
# if output_size < transform_size:
|
143 |
+
# img = img.resize((output_size, output_size), Image.ANTIALIAS)
|
144 |
+
|
145 |
+
# Save aligned image.
|
146 |
+
return rsize, crop, [lx, ly, rx, ry]
|
147 |
+
|
148 |
+
# def crop(self, img_np_list):
|
149 |
+
# for _i in range(len(img_np_list)):
|
150 |
+
# img_np = img_np_list[_i]
|
151 |
+
# lm = self.get_landmark(img_np)
|
152 |
+
# if lm is None:
|
153 |
+
# return None
|
154 |
+
# crop, quad = self.align_face(img=Image.fromarray(img_np), lm=lm, output_size=512)
|
155 |
+
# clx, cly, crx, cry = crop
|
156 |
+
# lx, ly, rx, ry = quad
|
157 |
+
# lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry)
|
158 |
+
|
159 |
+
# _inp = img_np_list[_i]
|
160 |
+
# _inp = _inp[cly:cry, clx:crx]
|
161 |
+
# _inp = _inp[ly:ry, lx:rx]
|
162 |
+
# img_np_list[_i] = _inp
|
163 |
+
# return img_np_list
|
164 |
+
|
165 |
+
def crop(self, img_np_list, still=False, xsize=512): # first frame for all video
|
166 |
+
img_np = img_np_list[0]
|
167 |
+
lm = self.get_landmark(img_np)
|
168 |
+
if lm is None:
|
169 |
+
raise 'can not detect the landmark from source image'
|
170 |
+
rsize, crop, quad = self.align_face(img=Image.fromarray(img_np), lm=lm, output_size=xsize)
|
171 |
+
clx, cly, crx, cry = crop
|
172 |
+
lx, ly, rx, ry = quad
|
173 |
+
lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry)
|
174 |
+
for _i in range(len(img_np_list)):
|
175 |
+
_inp = img_np_list[_i]
|
176 |
+
_inp = cv2.resize(_inp, (rsize[0], rsize[1]))
|
177 |
+
_inp = _inp[cly:cry, clx:crx]
|
178 |
+
# cv2.imwrite('test1.jpg', _inp)
|
179 |
+
if not still:
|
180 |
+
_inp = _inp[ly:ry, lx:rx]
|
181 |
+
# cv2.imwrite('test2.jpg', _inp)
|
182 |
+
img_np_list[_i] = _inp
|
183 |
+
return img_np_list, crop, quad
|
184 |
+
|
185 |
+
|
186 |
+
def read_video(filename, uplimit=100):
|
187 |
+
frames = []
|
188 |
+
cap = cv2.VideoCapture(filename)
|
189 |
+
cnt = 0
|
190 |
+
while cap.isOpened():
|
191 |
+
ret, frame = cap.read()
|
192 |
+
if ret:
|
193 |
+
frame = cv2.resize(frame, (512, 512))
|
194 |
+
frames.append(frame)
|
195 |
+
else:
|
196 |
+
break
|
197 |
+
cnt += 1
|
198 |
+
if cnt >= uplimit:
|
199 |
+
break
|
200 |
+
cap.release()
|
201 |
+
assert len(frames) > 0, f'{filename}: video with no frames!'
|
202 |
+
return frames
|
203 |
+
|
204 |
+
|
205 |
+
def create_video(video_name, frames, fps=25, video_format='.mp4', resize_ratio=1):
|
206 |
+
# video_name = os.path.dirname(image_folder) + video_format
|
207 |
+
# img_list = glob.glob1(image_folder, 'frame*')
|
208 |
+
# img_list.sort()
|
209 |
+
# frame = cv2.imread(os.path.join(image_folder, img_list[0]))
|
210 |
+
# frame = cv2.resize(frame, (0, 0), fx=resize_ratio, fy=resize_ratio)
|
211 |
+
# height, width, layers = frames[0].shape
|
212 |
+
height, width, layers = 512, 512, 3
|
213 |
+
if video_format == '.mp4':
|
214 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
215 |
+
elif video_format == '.avi':
|
216 |
+
fourcc = cv2.VideoWriter_fourcc(*'XVID')
|
217 |
+
video = cv2.VideoWriter(video_name, fourcc, fps, (width, height))
|
218 |
+
for _frame in frames:
|
219 |
+
_frame = cv2.resize(_frame, (height, width), interpolation=cv2.INTER_LINEAR)
|
220 |
+
video.write(_frame)
|
221 |
+
|
222 |
+
def create_images(video_name, frames):
|
223 |
+
height, width, layers = 512, 512, 3
|
224 |
+
images_dir = video_name.split('.')[0]
|
225 |
+
os.makedirs(images_dir, exist_ok=True)
|
226 |
+
for i, _frame in enumerate(frames):
|
227 |
+
_frame = cv2.resize(_frame, (height, width), interpolation=cv2.INTER_LINEAR)
|
228 |
+
_frame_path = os.path.join(images_dir, str(i)+'.jpg')
|
229 |
+
cv2.imwrite(_frame_path, _frame)
|
230 |
+
|
231 |
+
def run(data):
|
232 |
+
filename, opt, device = data
|
233 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = device
|
234 |
+
croper = Croper()
|
235 |
+
|
236 |
+
frames = read_video(filename, uplimit=opt.uplimit)
|
237 |
+
name = filename.split('/')[-1] # .split('.')[0]
|
238 |
+
name = os.path.join(opt.output_dir, name)
|
239 |
+
|
240 |
+
frames = croper.crop(frames)
|
241 |
+
if frames is None:
|
242 |
+
print(f'{name}: detect no face. should removed')
|
243 |
+
return
|
244 |
+
# create_video(name, frames)
|
245 |
+
create_images(name, frames)
|
246 |
+
|
247 |
+
|
248 |
+
def get_data_path(video_dir):
|
249 |
+
eg_video_files = ['/apdcephfs/share_1290939/quincheng/datasets/HDTF/backup_fps25/WDA_KatieHill_000.mp4']
|
250 |
+
# filenames = list()
|
251 |
+
# VIDEO_EXTENSIONS_LOWERCASE = {'mp4'}
|
252 |
+
# VIDEO_EXTENSIONS = VIDEO_EXTENSIONS_LOWERCASE.union({f.upper() for f in VIDEO_EXTENSIONS_LOWERCASE})
|
253 |
+
# extensions = VIDEO_EXTENSIONS
|
254 |
+
# for ext in extensions:
|
255 |
+
# filenames = sorted(glob.glob(f'{opt.input_dir}/**/*.{ext}'))
|
256 |
+
# print('Total number of videos:', len(filenames))
|
257 |
+
return eg_video_files
|
258 |
+
|
259 |
+
|
260 |
+
def get_wra_data_path(video_dir):
|
261 |
+
if opt.option == 'video':
|
262 |
+
videos_path = sorted(glob.glob(f'{video_dir}/*.mp4'))
|
263 |
+
elif opt.option == 'image':
|
264 |
+
videos_path = sorted(glob.glob(f'{video_dir}/*/'))
|
265 |
+
else:
|
266 |
+
raise NotImplementedError
|
267 |
+
print('Example videos: ', videos_path[:2])
|
268 |
+
return videos_path
|
269 |
+
|
difpoint/dataset_process/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
difpoint/dataset_process/__pycache__/audio.cpython-310.pyc
ADDED
Binary file (4.61 kB). View file
|
|
difpoint/dataset_process/__pycache__/audio.cpython-38.pyc
ADDED
Binary file (4.65 kB). View file
|
|
difpoint/dataset_process/audio.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import librosa
|
2 |
+
import librosa.filters
|
3 |
+
import numpy as np
|
4 |
+
# import tensorflow as tf
|
5 |
+
from scipy import signal
|
6 |
+
from scipy.io import wavfile
|
7 |
+
from difpoint.src.utils.hparams import hparams as hp
|
8 |
+
|
9 |
+
|
10 |
+
def load_wav(path, sr):
|
11 |
+
return librosa.core.load(path, sr=sr)[0]
|
12 |
+
|
13 |
+
|
14 |
+
def save_wav(wav, path, sr):
|
15 |
+
wav *= 32767 / max(0.01, np.max(np.abs(wav)))
|
16 |
+
# proposed by @dsmiller
|
17 |
+
wavfile.write(path, sr, wav.astype(np.int16))
|
18 |
+
|
19 |
+
|
20 |
+
def save_wavenet_wav(wav, path, sr):
|
21 |
+
librosa.output.write_wav(path, wav, sr=sr)
|
22 |
+
|
23 |
+
|
24 |
+
def preemphasis(wav, k, preemphasize=True):
|
25 |
+
if preemphasize:
|
26 |
+
return signal.lfilter([1, -k], [1], wav)
|
27 |
+
return wav
|
28 |
+
|
29 |
+
|
30 |
+
def inv_preemphasis(wav, k, inv_preemphasize=True):
|
31 |
+
if inv_preemphasize:
|
32 |
+
return signal.lfilter([1], [1, -k], wav)
|
33 |
+
return wav
|
34 |
+
|
35 |
+
|
36 |
+
def get_hop_size():
|
37 |
+
hop_size = hp.hop_size
|
38 |
+
if hop_size is None:
|
39 |
+
assert hp.frame_shift_ms is not None
|
40 |
+
hop_size = int(hp.frame_shift_ms / 1000 * hp.sample_rate)
|
41 |
+
return hop_size
|
42 |
+
|
43 |
+
|
44 |
+
def linearspectrogram(wav):
|
45 |
+
D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize))
|
46 |
+
S = _amp_to_db(np.abs(D)) - hp.ref_level_db
|
47 |
+
|
48 |
+
if hp.signal_normalization:
|
49 |
+
return _normalize(S)
|
50 |
+
return S
|
51 |
+
|
52 |
+
|
53 |
+
def melspectrogram(wav):
|
54 |
+
D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize))
|
55 |
+
S = _amp_to_db(_linear_to_mel(np.abs(D))) - hp.ref_level_db
|
56 |
+
|
57 |
+
if hp.signal_normalization:
|
58 |
+
return _normalize(S)
|
59 |
+
return S
|
60 |
+
|
61 |
+
|
62 |
+
def _lws_processor():
|
63 |
+
import lws
|
64 |
+
return lws.lws(hp.n_fft, get_hop_size(), fftsize=hp.win_size, mode="speech")
|
65 |
+
|
66 |
+
|
67 |
+
def _stft(y):
|
68 |
+
if hp.use_lws:
|
69 |
+
return _lws_processor(hp).stft(y).T
|
70 |
+
else:
|
71 |
+
return librosa.stft(y=y, n_fft=hp.n_fft, hop_length=get_hop_size(), win_length=hp.win_size)
|
72 |
+
|
73 |
+
|
74 |
+
##########################################################
|
75 |
+
# Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!)
|
76 |
+
def num_frames(length, fsize, fshift):
|
77 |
+
"""Compute number of time frames of spectrogram
|
78 |
+
"""
|
79 |
+
pad = (fsize - fshift)
|
80 |
+
if length % fshift == 0:
|
81 |
+
M = (length + pad * 2 - fsize) // fshift + 1
|
82 |
+
else:
|
83 |
+
M = (length + pad * 2 - fsize) // fshift + 2
|
84 |
+
return M
|
85 |
+
|
86 |
+
|
87 |
+
def pad_lr(x, fsize, fshift):
|
88 |
+
"""Compute left and right padding
|
89 |
+
"""
|
90 |
+
M = num_frames(len(x), fsize, fshift)
|
91 |
+
pad = (fsize - fshift)
|
92 |
+
T = len(x) + 2 * pad
|
93 |
+
r = (M - 1) * fshift + fsize - T
|
94 |
+
return pad, pad + r
|
95 |
+
|
96 |
+
|
97 |
+
##########################################################
|
98 |
+
# Librosa correct padding
|
99 |
+
def librosa_pad_lr(x, fsize, fshift):
|
100 |
+
return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0]
|
101 |
+
|
102 |
+
|
103 |
+
# Conversions
|
104 |
+
_mel_basis = None
|
105 |
+
|
106 |
+
|
107 |
+
def _linear_to_mel(spectogram):
|
108 |
+
global _mel_basis
|
109 |
+
if _mel_basis is None:
|
110 |
+
_mel_basis = _build_mel_basis()
|
111 |
+
return np.dot(_mel_basis, spectogram)
|
112 |
+
|
113 |
+
|
114 |
+
def _build_mel_basis():
|
115 |
+
assert hp.fmax <= hp.sample_rate // 2
|
116 |
+
return librosa.filters.mel(sr=hp.sample_rate, n_fft=hp.n_fft, n_mels=hp.num_mels,
|
117 |
+
fmin=hp.fmin, fmax=hp.fmax)
|
118 |
+
|
119 |
+
|
120 |
+
def _amp_to_db(x):
|
121 |
+
min_level = np.exp(hp.min_level_db / 20 * np.log(10))
|
122 |
+
return 20 * np.log10(np.maximum(min_level, x))
|
123 |
+
|
124 |
+
|
125 |
+
def _db_to_amp(x):
|
126 |
+
return np.power(10.0, (x) * 0.05)
|
127 |
+
|
128 |
+
|
129 |
+
def _normalize(S):
|
130 |
+
if hp.allow_clipping_in_normalization:
|
131 |
+
if hp.symmetric_mels:
|
132 |
+
return np.clip((2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value,
|
133 |
+
-hp.max_abs_value, hp.max_abs_value)
|
134 |
+
else:
|
135 |
+
return np.clip(hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db)), 0, hp.max_abs_value)
|
136 |
+
|
137 |
+
assert S.max() <= 0 and S.min() - hp.min_level_db >= 0
|
138 |
+
if hp.symmetric_mels:
|
139 |
+
return (2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value
|
140 |
+
else:
|
141 |
+
return hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db))
|
142 |
+
|
143 |
+
|
144 |
+
def _denormalize(D):
|
145 |
+
if hp.allow_clipping_in_normalization:
|
146 |
+
if hp.symmetric_mels:
|
147 |
+
return (((np.clip(D, -hp.max_abs_value,
|
148 |
+
hp.max_abs_value) + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value))
|
149 |
+
+ hp.min_level_db)
|
150 |
+
else:
|
151 |
+
return ((np.clip(D, 0, hp.max_abs_value) * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db)
|
152 |
+
|
153 |
+
if hp.symmetric_mels:
|
154 |
+
return (((D + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value)) + hp.min_level_db)
|
155 |
+
else:
|
156 |
+
return ((D * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db)
|
difpoint/dataset_process/wav2lip.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from torch import nn
|
4 |
+
|
5 |
+
|
6 |
+
class Conv2d(nn.Module):
|
7 |
+
def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, use_act=True, *args, **kwargs):
|
8 |
+
super().__init__(*args, **kwargs)
|
9 |
+
self.conv_block = nn.Sequential(
|
10 |
+
nn.Conv2d(cin, cout, kernel_size, stride, padding),
|
11 |
+
nn.BatchNorm2d(cout)
|
12 |
+
)
|
13 |
+
self.act = nn.ReLU()
|
14 |
+
self.residual = residual
|
15 |
+
self.use_act = use_act
|
16 |
+
|
17 |
+
def forward(self, x):
|
18 |
+
out = self.conv_block(x)
|
19 |
+
if self.residual:
|
20 |
+
out += x
|
21 |
+
|
22 |
+
if self.use_act:
|
23 |
+
return self.act(out)
|
24 |
+
else:
|
25 |
+
return out
|
26 |
+
|
27 |
+
class AudioEncoder(nn.Module):
|
28 |
+
def __init__(self, wav2lip_checkpoint, device):
|
29 |
+
super(AudioEncoder, self).__init__()
|
30 |
+
|
31 |
+
self.audio_encoder = nn.Sequential(
|
32 |
+
Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
|
33 |
+
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
34 |
+
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
35 |
+
|
36 |
+
Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1),
|
37 |
+
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
38 |
+
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
39 |
+
|
40 |
+
Conv2d(64, 128, kernel_size=3, stride=3, padding=1),
|
41 |
+
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
42 |
+
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
43 |
+
|
44 |
+
Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1),
|
45 |
+
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
|
46 |
+
|
47 |
+
Conv2d(256, 512, kernel_size=3, stride=1, padding=0),
|
48 |
+
Conv2d(512, 512, kernel_size=1, stride=1, padding=0),)
|
49 |
+
|
50 |
+
#### load the pre-trained audio_encoder
|
51 |
+
wav2lip_state_dict = torch.load(wav2lip_checkpoint, map_location=torch.device(device))['state_dict']
|
52 |
+
state_dict = self.audio_encoder.state_dict()
|
53 |
+
|
54 |
+
for k,v in wav2lip_state_dict.items():
|
55 |
+
if 'audio_encoder' in k:
|
56 |
+
state_dict[k.replace('module.audio_encoder.', '')] = v
|
57 |
+
self.audio_encoder.load_state_dict(state_dict)
|
58 |
+
|
59 |
+
|
60 |
+
def forward(self, audio_sequences):
|
61 |
+
# audio_sequences = (B, T, 1, 80, 16)
|
62 |
+
B = audio_sequences.size(0)
|
63 |
+
|
64 |
+
audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0)
|
65 |
+
|
66 |
+
audio_embedding = self.audio_encoder(audio_sequences) # B, 512, 1, 1
|
67 |
+
dim = audio_embedding.shape[1]
|
68 |
+
audio_embedding = audio_embedding.reshape((B, -1, dim, 1, 1))
|
69 |
+
|
70 |
+
return audio_embedding.squeeze(-1).squeeze(-1) #B seq_len+1 512
|
71 |
+
|
72 |
+
wav2lip_checkpoint='ckpts/wav2lip.pth'
|
73 |
+
wav2lip_model = AudioEncoder(wav2lip_checkpoint, 'cuda')
|
74 |
+
wav2lip_model.cuda()
|
75 |
+
wav2lip_model.eval()
|
difpoint/datasets/norm_info_d6.5_c8.5_vox1_train.npz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9422e503e75df9d1bd455d8e0f9f5e2826b12956cdedbb5566097c0151bddafb
|
3 |
+
size 5580
|
difpoint/inference.py
ADDED
@@ -0,0 +1,474 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: UTF-8 -*-
|
2 |
+
'''
|
3 |
+
@File :inference.py
|
4 |
+
@Author :Chaolong Yang
|
5 |
+
@Date :2024/5/29 19:26
|
6 |
+
'''
|
7 |
+
import glob
|
8 |
+
|
9 |
+
import os
|
10 |
+
os.environ['HYDRA_FULL_ERROR']='1'
|
11 |
+
|
12 |
+
|
13 |
+
import os
|
14 |
+
import time
|
15 |
+
import shutil
|
16 |
+
import uuid
|
17 |
+
import os
|
18 |
+
import cv2
|
19 |
+
import tyro
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
from tqdm import tqdm
|
23 |
+
import cv2
|
24 |
+
from rich.progress import track
|
25 |
+
|
26 |
+
from difpoint.croper import Croper
|
27 |
+
from PIL import Image
|
28 |
+
import time
|
29 |
+
|
30 |
+
|
31 |
+
import torch
|
32 |
+
import torch.nn.functional as F
|
33 |
+
from torch import nn
|
34 |
+
import imageio
|
35 |
+
from pydub import AudioSegment
|
36 |
+
from pykalman import KalmanFilter
|
37 |
+
import scipy
|
38 |
+
import matplotlib.pyplot as plt
|
39 |
+
import matplotlib
|
40 |
+
matplotlib.use('Agg')
|
41 |
+
|
42 |
+
from difpoint.dataset_process import audio
|
43 |
+
import os
|
44 |
+
import argparse
|
45 |
+
import pdb
|
46 |
+
import ffmpeg
|
47 |
+
import cv2
|
48 |
+
import time
|
49 |
+
import numpy as np
|
50 |
+
import os
|
51 |
+
import datetime
|
52 |
+
import platform
|
53 |
+
from omegaconf import OmegaConf
|
54 |
+
#from difpoint.src.pipelines.faster_live_portrait_pipeline import FasterLivePortraitPipeline
|
55 |
+
from difpoint.src.live_portrait_pipeline import LivePortraitPipeline
|
56 |
+
from difpoint.src.config.argument_config import ArgumentConfig
|
57 |
+
from difpoint.src.config.inference_config import InferenceConfig
|
58 |
+
from difpoint.src.config.crop_config import CropConfig
|
59 |
+
from difpoint.src.live_portrait_pipeline import LivePortraitPipeline
|
60 |
+
from difpoint.src.utils.retargeting_utils import calc_eye_close_ratio, calc_lip_close_ratio
|
61 |
+
from difpoint.src.utils.camera import get_rotation_matrix
|
62 |
+
from difpoint.src.utils.video import images2video, concat_frames, get_fps, add_audio_to_video, has_audio_stream
|
63 |
+
|
64 |
+
|
65 |
+
FFMPEG = "ffmpeg"
|
66 |
+
|
67 |
+
def parse_audio_length(audio_length, sr, fps):
|
68 |
+
bit_per_frames = sr / fps
|
69 |
+
num_frames = int(audio_length / bit_per_frames)
|
70 |
+
audio_length = int(num_frames * bit_per_frames)
|
71 |
+
return audio_length, num_frames
|
72 |
+
|
73 |
+
def crop_pad_audio(wav, audio_length):
|
74 |
+
if len(wav) > audio_length:
|
75 |
+
wav = wav[:audio_length]
|
76 |
+
elif len(wav) < audio_length:
|
77 |
+
wav = np.pad(wav, [0, audio_length - len(wav)], mode='constant', constant_values=0)
|
78 |
+
return wav
|
79 |
+
|
80 |
+
class Conv2d(nn.Module):
|
81 |
+
def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, use_act=True, *args, **kwargs):
|
82 |
+
super().__init__(*args, **kwargs)
|
83 |
+
self.conv_block = nn.Sequential(
|
84 |
+
nn.Conv2d(cin, cout, kernel_size, stride, padding),
|
85 |
+
nn.BatchNorm2d(cout)
|
86 |
+
)
|
87 |
+
self.act = nn.ReLU()
|
88 |
+
self.residual = residual
|
89 |
+
self.use_act = use_act
|
90 |
+
|
91 |
+
def forward(self, x):
|
92 |
+
out = self.conv_block(x)
|
93 |
+
if self.residual:
|
94 |
+
out += x
|
95 |
+
|
96 |
+
if self.use_act:
|
97 |
+
return self.act(out)
|
98 |
+
else:
|
99 |
+
return out
|
100 |
+
|
101 |
+
class AudioEncoder(nn.Module):
|
102 |
+
def __init__(self, wav2lip_checkpoint, device):
|
103 |
+
super(AudioEncoder, self).__init__()
|
104 |
+
|
105 |
+
self.audio_encoder = nn.Sequential(
|
106 |
+
Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
|
107 |
+
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
108 |
+
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
109 |
+
|
110 |
+
Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1),
|
111 |
+
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
112 |
+
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
113 |
+
|
114 |
+
Conv2d(64, 128, kernel_size=3, stride=3, padding=1),
|
115 |
+
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
116 |
+
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
117 |
+
|
118 |
+
Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1),
|
119 |
+
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
|
120 |
+
|
121 |
+
Conv2d(256, 512, kernel_size=3, stride=1, padding=0),
|
122 |
+
Conv2d(512, 512, kernel_size=1, stride=1, padding=0),)
|
123 |
+
|
124 |
+
#### load the pre-trained audio_encoder
|
125 |
+
wav2lip_state_dict = torch.load(wav2lip_checkpoint, map_location=torch.device(device))['state_dict']
|
126 |
+
state_dict = self.audio_encoder.state_dict()
|
127 |
+
|
128 |
+
for k,v in wav2lip_state_dict.items():
|
129 |
+
if 'audio_encoder' in k:
|
130 |
+
state_dict[k.replace('module.audio_encoder.', '')] = v
|
131 |
+
self.audio_encoder.load_state_dict(state_dict)
|
132 |
+
|
133 |
+
def forward(self, audio_sequences):
|
134 |
+
# audio_sequences = (B, T, 1, 80, 16)
|
135 |
+
B = audio_sequences.size(0)
|
136 |
+
|
137 |
+
audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0)
|
138 |
+
|
139 |
+
audio_embedding = self.audio_encoder(audio_sequences) # B, 512, 1, 1
|
140 |
+
dim = audio_embedding.shape[1]
|
141 |
+
audio_embedding = audio_embedding.reshape((B, -1, dim, 1, 1))
|
142 |
+
|
143 |
+
return audio_embedding.squeeze(-1).squeeze(-1) #B seq_len+1 512
|
144 |
+
|
145 |
+
def partial_fields(target_class, kwargs):
|
146 |
+
return target_class(**{k: v for k, v in kwargs.items() if hasattr(target_class, k)})
|
147 |
+
|
148 |
+
def dct2device(dct: dict, device):
|
149 |
+
for key in dct:
|
150 |
+
dct[key] = torch.tensor(dct[key]).to(device)
|
151 |
+
return dct
|
152 |
+
|
153 |
+
def save_video_with_watermark(video, audio, save_path, watermark=False):
|
154 |
+
temp_file = str(uuid.uuid4())+'.mp4'
|
155 |
+
cmd = r'ffmpeg -y -i "%s" -i "%s" -vcodec copy "%s"' % (video, audio, temp_file)
|
156 |
+
os.system(cmd)
|
157 |
+
shutil.move(temp_file, save_path)
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
class Inferencer(object):
|
162 |
+
def __init__(self):
|
163 |
+
|
164 |
+
st=time.time()
|
165 |
+
print('#'*25+'Start initialization'+'#'*25)
|
166 |
+
self.device = 'cuda'
|
167 |
+
from difpoint.model import get_model
|
168 |
+
self.point_diffusion = get_model()
|
169 |
+
ckpt = torch.load('./downloaded_repo/ckpts/KDTalker.pth', weights_only=False)
|
170 |
+
|
171 |
+
self.point_diffusion.load_state_dict(ckpt['model'])
|
172 |
+
print('model', self.point_diffusion.children())
|
173 |
+
self.point_diffusion.eval()
|
174 |
+
self.point_diffusion.to(self.device)
|
175 |
+
|
176 |
+
lm_croper_checkpoint = './downloaded_repo/ckpts/shape_predictor_68_face_landmarks.dat'
|
177 |
+
self.croper = Croper(lm_croper_checkpoint)
|
178 |
+
|
179 |
+
self.norm_info = dict(np.load(r'difpoint/datasets/norm_info_d6.5_c8.5_vox1_train.npz'))
|
180 |
+
|
181 |
+
wav2lip_checkpoint = './downloaded_repo/ckpts/wav2lip.pth'
|
182 |
+
self.wav2lip_model = AudioEncoder(wav2lip_checkpoint, 'cuda')
|
183 |
+
self.wav2lip_model.cuda()
|
184 |
+
self.wav2lip_model.eval()
|
185 |
+
|
186 |
+
args = tyro.cli(ArgumentConfig)
|
187 |
+
|
188 |
+
self.inf_cfg = partial_fields(InferenceConfig, args.__dict__) # use attribute of args to initial InferenceConfig
|
189 |
+
self.crop_cfg = partial_fields(CropConfig, args.__dict__) # use attribute of args to initial CropConfig
|
190 |
+
|
191 |
+
self.live_portrait_pipeline = LivePortraitPipeline(inference_cfg=self.inf_cfg, crop_cfg=self.crop_cfg)
|
192 |
+
print('#'*25+f'End initialization, cost time {time.time()-st}'+'#'*25)
|
193 |
+
|
194 |
+
def _norm(self, data_dict):
|
195 |
+
for k in data_dict.keys():
|
196 |
+
if k in ['yaw', 'pitch', 'roll', 't', 'exp', 'scale', 'kp', 'c_lip', 'c_eye']:
|
197 |
+
v=data_dict[k]
|
198 |
+
data_dict[k] = (v - self.norm_info[k+'_mean'])/self.norm_info[k+'_std']
|
199 |
+
return data_dict
|
200 |
+
|
201 |
+
def _denorm(self, data_dict):
|
202 |
+
for k in data_dict.keys():
|
203 |
+
if k in ['yaw', 'pitch', 'roll', 't', 'exp', 'scale', 'kp', 'c_lip', 'c_eye']:
|
204 |
+
v=data_dict[k]
|
205 |
+
data_dict[k] = v * self.norm_info[k+'_std'] + self.norm_info[k+'_mean']
|
206 |
+
return data_dict
|
207 |
+
|
208 |
+
|
209 |
+
def output_to_dict(self, data):
|
210 |
+
output = {}
|
211 |
+
|
212 |
+
output['scale'] = data[:, 0]
|
213 |
+
output['yaw'] = data[:, 1, None]
|
214 |
+
output['pitch'] = data[:, 2, None]
|
215 |
+
output['roll'] = data[:, 3, None]
|
216 |
+
output['t'] = data[:, 4:7]
|
217 |
+
output['exp'] = data[:, 7:]
|
218 |
+
|
219 |
+
return output
|
220 |
+
|
221 |
+
def extract_mel_from_audio(self, audio_file_path):
|
222 |
+
syncnet_mel_step_size = 16
|
223 |
+
fps = 25
|
224 |
+
wav = audio.load_wav(audio_file_path, 16000)
|
225 |
+
wav_length, num_frames = parse_audio_length(len(wav), 16000, 25)
|
226 |
+
wav = crop_pad_audio(wav, wav_length)
|
227 |
+
orig_mel = audio.melspectrogram(wav).T
|
228 |
+
spec = orig_mel.copy()
|
229 |
+
indiv_mels = []
|
230 |
+
|
231 |
+
for i in tqdm(range(num_frames), 'mel:'):
|
232 |
+
start_frame_num = i - 2
|
233 |
+
start_idx = int(80. * (start_frame_num / float(fps)))
|
234 |
+
end_idx = start_idx + syncnet_mel_step_size
|
235 |
+
seq = list(range(start_idx, end_idx))
|
236 |
+
seq = [min(max(item, 0), orig_mel.shape[0] - 1) for item in seq]
|
237 |
+
m = spec[seq, :]
|
238 |
+
indiv_mels.append(m.T)
|
239 |
+
indiv_mels = np.asarray(indiv_mels) # T 80 16
|
240 |
+
return indiv_mels
|
241 |
+
|
242 |
+
def extract_wav2lip_from_audio(self, audio_file_path):
|
243 |
+
asd_mel = self.extract_mel_from_audio(audio_file_path)
|
244 |
+
asd_mel = torch.FloatTensor(asd_mel).cuda().unsqueeze(0).unsqueeze(2)
|
245 |
+
with torch.no_grad():
|
246 |
+
hidden = self.wav2lip_model(asd_mel)
|
247 |
+
return hidden[0].cpu().detach().numpy()
|
248 |
+
|
249 |
+
def headpose_pred_to_degree(self, pred):
|
250 |
+
device = pred.device
|
251 |
+
idx_tensor = [idx for idx in range(66)]
|
252 |
+
idx_tensor = torch.FloatTensor(idx_tensor).to(device)
|
253 |
+
pred = F.softmax(pred)
|
254 |
+
degree = torch.sum(pred * idx_tensor, 1) * 3 - 99
|
255 |
+
return degree
|
256 |
+
|
257 |
+
def calc_combined_eye_ratio(self, c_d_eyes_i, c_s_eyes):
|
258 |
+
c_s_eyes_tensor = torch.from_numpy(c_s_eyes).float().to(self.device)
|
259 |
+
c_d_eyes_i_tensor = c_d_eyes_i[0].reshape(1, 1).to(self.device)
|
260 |
+
# [c_s,eyes, c_d,eyes,i]
|
261 |
+
combined_eye_ratio_tensor = torch.cat([c_s_eyes_tensor, c_d_eyes_i_tensor], dim=1)
|
262 |
+
return combined_eye_ratio_tensor
|
263 |
+
|
264 |
+
def calc_combined_lip_ratio(self, c_d_lip_i, c_s_lip):
|
265 |
+
c_s_lip_tensor = torch.from_numpy(c_s_lip).float().to(self.device)
|
266 |
+
c_d_lip_i_tensor = c_d_lip_i[0].to(self.device).reshape(1, 1) # 1x1
|
267 |
+
# [c_s,lip, c_d,lip,i]
|
268 |
+
combined_lip_ratio_tensor = torch.cat([c_s_lip_tensor, c_d_lip_i_tensor], dim=1) # 1x2
|
269 |
+
return combined_lip_ratio_tensor
|
270 |
+
|
271 |
+
# 2024.06.26
|
272 |
+
@torch.no_grad()
|
273 |
+
def generate_with_audio_img(self, upload_audio_path, tts_audio_path, audio_type, image_path, smoothed_pitch, smoothed_yaw, smoothed_roll, smoothed_t, save_path='./downloaded_repo/'):
|
274 |
+
print(audio_type)
|
275 |
+
if audio_type == 'upload':
|
276 |
+
audio_path = upload_audio_path
|
277 |
+
elif audio_type == 'tts':
|
278 |
+
audio_path = tts_audio_path
|
279 |
+
save_path = os.path.join(save_path, "output.mp4")
|
280 |
+
image = [np.array(Image.open(image_path).convert('RGB'))]
|
281 |
+
if image[0].shape[0] != 256 or image[0].shape[1] != 256:
|
282 |
+
cropped_image, crop, quad = self.croper.crop(image, still=False, xsize=512)
|
283 |
+
input_image = cv2.resize(cropped_image[0], (256, 256))
|
284 |
+
else:
|
285 |
+
input_image = image[0]
|
286 |
+
|
287 |
+
I_s = torch.FloatTensor(input_image.transpose((2, 0, 1))).unsqueeze(0).cuda() / 255
|
288 |
+
|
289 |
+
x_s_info = self.live_portrait_pipeline.live_portrait_wrapper.get_kp_info(I_s)
|
290 |
+
x_c_s = x_s_info['kp'].reshape(1, 21, -1)
|
291 |
+
R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll'])
|
292 |
+
f_s = self.live_portrait_pipeline.live_portrait_wrapper.extract_feature_3d(I_s)
|
293 |
+
x_s = self.live_portrait_pipeline.live_portrait_wrapper.transform_keypoint(x_s_info)
|
294 |
+
|
295 |
+
flag_lip_zero = self.inf_cfg.flag_lip_zero # not overwrite
|
296 |
+
|
297 |
+
|
298 |
+
######## process driving info ########
|
299 |
+
kp_info = {}
|
300 |
+
for k in x_s_info.keys():
|
301 |
+
kp_info[k] = x_s_info[k].cpu().numpy()
|
302 |
+
# kp_info['c_lip'] = c_s_lip
|
303 |
+
# kp_info['c_eye'] = c_s_eye
|
304 |
+
|
305 |
+
kp_info = self._norm(kp_info)
|
306 |
+
|
307 |
+
ori_kp = torch.cat([torch.zeros([1, 7]), torch.Tensor(kp_info['kp'])], -1).cuda()
|
308 |
+
|
309 |
+
input_x = np.concatenate([kp_info[k] for k in ['scale', 'yaw', 'pitch', 'roll', 't']], 1)
|
310 |
+
input_x = np.concatenate((input_x, kp_info['exp'].reshape(1, 63)), axis=1)
|
311 |
+
input_x = np.expand_dims(input_x, -1)
|
312 |
+
input_x = np.expand_dims(input_x, 0)
|
313 |
+
input_x = np.concatenate([input_x, input_x, input_x], -1)
|
314 |
+
|
315 |
+
aud_feat = self.extract_wav2lip_from_audio(audio_path)
|
316 |
+
|
317 |
+
outputs = [input_x]
|
318 |
+
|
319 |
+
st = time.time()
|
320 |
+
print('#' * 25 + 'Start Inference' + '#' * 25)
|
321 |
+
sample_frame = 64 # 32 aud_feat.shape[0]
|
322 |
+
|
323 |
+
for i in range(0, aud_feat.shape[0] - 1, sample_frame):
|
324 |
+
input_mel = torch.Tensor(aud_feat[i: i + sample_frame]).unsqueeze(0).cuda()
|
325 |
+
kp0 = torch.Tensor(outputs[-1])[:, -1].cuda()
|
326 |
+
pred_kp = self.point_diffusion.forward_sample(70, ref_kps=kp0, ori_kps=ori_kp, aud_feat=input_mel,
|
327 |
+
scheduler='ddim', num_inference_steps=50)
|
328 |
+
outputs.append(pred_kp.cpu().numpy())
|
329 |
+
|
330 |
+
|
331 |
+
outputs = np.mean(np.concatenate(outputs, 1)[0], -1)[1:, ]
|
332 |
+
output_dict = self.output_to_dict(outputs)
|
333 |
+
output_dict = self._denorm(output_dict)
|
334 |
+
|
335 |
+
num_frame = output_dict['yaw'].shape[0]
|
336 |
+
x_d_info = {}
|
337 |
+
for key in output_dict:
|
338 |
+
x_d_info[key] = torch.tensor(output_dict[key]).cuda()
|
339 |
+
|
340 |
+
# smooth
|
341 |
+
def smooth(sequence, n_dim_state=1):
|
342 |
+
kf = KalmanFilter(initial_state_mean=sequence[0],
|
343 |
+
transition_covariance=0.05 * np.eye(n_dim_state), # 较小的过程噪声
|
344 |
+
observation_covariance=0.001 * np.eye(n_dim_state)) # 可以增大观测噪声,减少敏感性
|
345 |
+
state_means, _ = kf.smooth(sequence)
|
346 |
+
return state_means
|
347 |
+
|
348 |
+
# scale_data = x_d_info['scale'].cpu().numpy()
|
349 |
+
yaw_data = x_d_info['yaw'].cpu().numpy()
|
350 |
+
pitch_data = x_d_info['pitch'].cpu().numpy()
|
351 |
+
roll_data = x_d_info['roll'].cpu().numpy()
|
352 |
+
t_data = x_d_info['t'].cpu().numpy()
|
353 |
+
exp_data = x_d_info['exp'].cpu().numpy()
|
354 |
+
|
355 |
+
smoothed_pitch = smooth(pitch_data, n_dim_state=1) * smoothed_pitch
|
356 |
+
smoothed_yaw = smooth(yaw_data, n_dim_state=1) * smoothed_yaw
|
357 |
+
smoothed_roll = smooth(roll_data, n_dim_state=1) * smoothed_roll
|
358 |
+
# smoothed_scale = smooth(scale_data, n_dim_state=1)
|
359 |
+
smoothed_t = smooth(t_data, n_dim_state=3) * smoothed_t
|
360 |
+
smoothed_exp = smooth(exp_data, n_dim_state=63)
|
361 |
+
|
362 |
+
# x_d_info['scale'] = torch.Tensor(smoothed_scale).cuda()
|
363 |
+
x_d_info['pitch'] = torch.Tensor(smoothed_pitch).cuda()
|
364 |
+
x_d_info['yaw'] = torch.Tensor(smoothed_yaw).cuda()
|
365 |
+
x_d_info['roll'] = torch.Tensor(smoothed_roll).cuda()
|
366 |
+
x_d_info['t'] = torch.Tensor(smoothed_t).cuda()
|
367 |
+
x_d_info['exp'] = torch.Tensor(smoothed_exp).cuda()
|
368 |
+
|
369 |
+
|
370 |
+
|
371 |
+
template_dct = {'motion': [], 'c_d_eyes_lst': [], 'c_d_lip_lst': []}
|
372 |
+
for i in track(range(num_frame), description='Making motion templates...', total=num_frame):
|
373 |
+
# collect s_d, R_d, δ_d and t_d for inference
|
374 |
+
x_d_i_info = x_d_info
|
375 |
+
R_d_i = get_rotation_matrix(x_d_i_info['pitch'][i], x_d_i_info['yaw'][i], x_d_i_info['roll'][i])
|
376 |
+
|
377 |
+
item_dct = {
|
378 |
+
'scale': x_d_i_info['scale'][i].cpu().numpy().astype(np.float32),
|
379 |
+
'R_d': R_d_i.cpu().numpy().astype(np.float32),
|
380 |
+
'exp': x_d_i_info['exp'][i].reshape(1, 21, -1).cpu().numpy().astype(np.float32),
|
381 |
+
't': x_d_i_info['t'][i].cpu().numpy().astype(np.float32),
|
382 |
+
}
|
383 |
+
|
384 |
+
template_dct['motion'].append(item_dct)
|
385 |
+
# template_dct['c_d_eyes_lst'].append(x_d_i_info['c_eye'][i])
|
386 |
+
# template_dct['c_d_lip_lst'].append(x_d_i_info['c_lip'][i])
|
387 |
+
|
388 |
+
I_p_lst = []
|
389 |
+
R_d_0, x_d_0_info = None, None
|
390 |
+
|
391 |
+
for i in track(range(num_frame), description='Animating...', total=num_frame):
|
392 |
+
x_d_i_info = template_dct['motion'][i]
|
393 |
+
|
394 |
+
for key in x_d_i_info:
|
395 |
+
x_d_i_info[key] = torch.tensor(x_d_i_info[key]).cuda()
|
396 |
+
|
397 |
+
R_d_i = x_d_i_info['R_d']
|
398 |
+
|
399 |
+
if i == 0:
|
400 |
+
R_d_0 = R_d_i
|
401 |
+
x_d_0_info = x_d_i_info
|
402 |
+
|
403 |
+
|
404 |
+
if self.inf_cfg.flag_relative_motion:
|
405 |
+
R_new = (R_d_i @ R_d_0.permute(0, 2, 1)) @ R_s
|
406 |
+
delta_new = x_s_info['exp'].reshape(1, 21, -1) + (x_d_i_info['exp'] - x_d_0_info['exp'])
|
407 |
+
scale_new = x_s_info['scale'] * (x_d_i_info['scale'] / x_d_0_info['scale'])
|
408 |
+
t_new = x_s_info['t'] + (x_d_i_info['t'] - x_d_0_info['t'])
|
409 |
+
else:
|
410 |
+
R_new = R_d_i
|
411 |
+
delta_new = x_d_i_info['exp']
|
412 |
+
scale_new = x_s_info['scale']
|
413 |
+
t_new = x_d_i_info['t']
|
414 |
+
t_new[..., 2] = 0 # zero tz
|
415 |
+
|
416 |
+
x_d_i_new = scale_new * (x_c_s @ R_new + delta_new) + t_new
|
417 |
+
|
418 |
+
|
419 |
+
# Algorithm 1:
|
420 |
+
if not self.inf_cfg.flag_stitching and not self.inf_cfg.flag_eye_retargeting and not self.inf_cfg.flag_lip_retargeting:
|
421 |
+
# without stitching or retargeting
|
422 |
+
if flag_lip_zero:
|
423 |
+
x_d_i_new += lip_delta_before_animation.reshape(-1, x_s.shape[1], 3)
|
424 |
+
else:
|
425 |
+
pass
|
426 |
+
elif self.inf_cfg.flag_stitching and not self.inf_cfg.flag_eye_retargeting and not self.inf_cfg.flag_lip_retargeting:
|
427 |
+
# with stitching and without retargeting
|
428 |
+
if flag_lip_zero:
|
429 |
+
x_d_i_new = self.live_portrait_pipeline.live_portrait_wrapper.stitching(x_s, x_d_i_new) + lip_delta_before_animation.reshape(-1, x_s.shape[1], 3)
|
430 |
+
else:
|
431 |
+
x_d_i_new = self.live_portrait_pipeline.live_portrait_wrapper.stitching(x_s, x_d_i_new)
|
432 |
+
else:
|
433 |
+
eyes_delta, lip_delta = None, None
|
434 |
+
|
435 |
+
if self.inf_cfg.flag_relative_motion: # use x_s
|
436 |
+
x_d_i_new = x_s + \
|
437 |
+
(eyes_delta.reshape(-1, x_s.shape[1], 3) if eyes_delta is not None else 0) + \
|
438 |
+
(lip_delta.reshape(-1, x_s.shape[1], 3) if lip_delta is not None else 0)
|
439 |
+
else: # use x_d,i
|
440 |
+
x_d_i_new = x_d_i_new + \
|
441 |
+
(eyes_delta.reshape(-1, x_s.shape[1], 3) if eyes_delta is not None else 0) + \
|
442 |
+
(lip_delta.reshape(-1, x_s.shape[1], 3) if lip_delta is not None else 0)
|
443 |
+
|
444 |
+
if self.inf_cfg.flag_stitching:
|
445 |
+
x_d_i_new = self.live_portrait_pipeline.live_portrait_wrapper.stitching(x_s, x_d_i_new)
|
446 |
+
|
447 |
+
|
448 |
+
out = self.live_portrait_pipeline.live_portrait_wrapper.warp_decode(f_s, x_s, x_d_i_new)
|
449 |
+
I_p_i = self.live_portrait_pipeline.live_portrait_wrapper.parse_output(out['out'])[0]
|
450 |
+
I_p_lst.append(I_p_i)
|
451 |
+
|
452 |
+
video_name = os.path.basename(save_path)
|
453 |
+
video_save_dir = os.path.dirname(save_path)
|
454 |
+
path = os.path.join(video_save_dir, video_name)
|
455 |
+
|
456 |
+
imageio.mimsave(path, I_p_lst, fps=float(25))
|
457 |
+
|
458 |
+
audio_name = audio_path.split('/')[-1]
|
459 |
+
new_audio_path = os.path.join(video_save_dir, audio_name)
|
460 |
+
start_time = 0
|
461 |
+
# cog will not keep the .mp3 filename
|
462 |
+
sound = AudioSegment.from_file(audio_path)
|
463 |
+
end_time = start_time + num_frame * 1 / 25 * 1000
|
464 |
+
word1 = sound.set_frame_rate(16000)
|
465 |
+
word = word1[start_time:end_time]
|
466 |
+
word.export(new_audio_path, format="wav")
|
467 |
+
|
468 |
+
save_video_with_watermark(path, new_audio_path, save_path, watermark=False)
|
469 |
+
print(f'The generated video is named {video_save_dir}/{video_name}')
|
470 |
+
|
471 |
+
print('#' * 25 + f'End Inference, cost time {time.time() - st}' + '#' * 25)
|
472 |
+
return save_path
|
473 |
+
|
474 |
+
|
difpoint/model/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .model import ConditionalPointCloudDiffusionModel
|
2 |
+
|
3 |
+
def get_model():
|
4 |
+
model = ConditionalPointCloudDiffusionModel()
|
5 |
+
return model
|
6 |
+
|
difpoint/model/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (325 Bytes). View file
|
|
difpoint/model/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (328 Bytes). View file
|
|
difpoint/model/__pycache__/model.cpython-310.pyc
ADDED
Binary file (5.33 kB). View file
|
|
difpoint/model/__pycache__/model.cpython-38.pyc
ADDED
Binary file (5.25 kB). View file
|
|
difpoint/model/__pycache__/model_utils.cpython-310.pyc
ADDED
Binary file (1.69 kB). View file
|
|
difpoint/model/__pycache__/model_utils.cpython-38.pyc
ADDED
Binary file (1.7 kB). View file
|
|
difpoint/model/__pycache__/point_model.cpython-310.pyc
ADDED
Binary file (1.78 kB). View file
|
|
difpoint/model/__pycache__/point_model.cpython-38.pyc
ADDED
Binary file (1.73 kB). View file
|
|
difpoint/model/model.py
ADDED
@@ -0,0 +1,409 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
from typing import Optional
|
3 |
+
from einops import rearrange
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
|
7 |
+
from diffusers.schedulers.scheduling_ddim import DDIMScheduler
|
8 |
+
from diffusers.schedulers.scheduling_pndm import PNDMScheduler
|
9 |
+
|
10 |
+
from torch import Tensor
|
11 |
+
from tqdm import tqdm
|
12 |
+
from diffusers import ModelMixin
|
13 |
+
from .model_utils import get_custom_betas
|
14 |
+
from .point_model import PointModel
|
15 |
+
|
16 |
+
import copy
|
17 |
+
class ConditionalPointCloudDiffusionModel(ModelMixin):
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
beta_start: float = 1e-5,
|
21 |
+
beta_end: float = 8e-3,
|
22 |
+
beta_schedule: str = 'linear',
|
23 |
+
point_cloud_model: str = 'simple',
|
24 |
+
point_cloud_model_embed_dim: int = 64,
|
25 |
+
):
|
26 |
+
super().__init__()
|
27 |
+
self.in_channels = 70 # 3 for 3D point positions
|
28 |
+
self.out_channels = 70
|
29 |
+
|
30 |
+
# Checks
|
31 |
+
# Create diffusion model schedulers which define the sampling timesteps
|
32 |
+
scheduler_kwargs = {}
|
33 |
+
if beta_schedule == 'custom':
|
34 |
+
scheduler_kwargs.update(dict(trained_betas=get_custom_betas(beta_start=beta_start, beta_end=beta_end)))
|
35 |
+
else:
|
36 |
+
scheduler_kwargs.update(dict(beta_start=beta_start, beta_end=beta_end, beta_schedule=beta_schedule))
|
37 |
+
self.schedulers_map = {
|
38 |
+
'ddpm': DDPMScheduler(**scheduler_kwargs, clip_sample=False),
|
39 |
+
'ddim': DDIMScheduler(**scheduler_kwargs, clip_sample=False),
|
40 |
+
'pndm': PNDMScheduler(**scheduler_kwargs),
|
41 |
+
}
|
42 |
+
self.scheduler = self.schedulers_map['ddim'] # this can be changed for inference
|
43 |
+
|
44 |
+
# Create point cloud model for processing point cloud at each diffusion step
|
45 |
+
self.point_model = PointModel(
|
46 |
+
model_type=point_cloud_model,
|
47 |
+
embed_dim=point_cloud_model_embed_dim,
|
48 |
+
in_channels=self.in_channels,
|
49 |
+
out_channels=self.out_channels,
|
50 |
+
)
|
51 |
+
|
52 |
+
def forward_train(
|
53 |
+
self,
|
54 |
+
pc: Optional[Tensor],
|
55 |
+
ref_kps: Optional[Tensor],
|
56 |
+
ori_kps: Optional[Tensor],
|
57 |
+
aud_feat: Optional[Tensor],
|
58 |
+
mode: str = 'train',
|
59 |
+
return_intermediate_steps: bool = False
|
60 |
+
):
|
61 |
+
|
62 |
+
# Normalize colors and convert to tensor
|
63 |
+
x_0 = pc
|
64 |
+
B, Nf, Np, D = x_0.shape# batch, nums of frames, nums of points, 3
|
65 |
+
|
66 |
+
|
67 |
+
x_0=x_0[:,:,:,0]# batch, nums of frames, 70
|
68 |
+
|
69 |
+
# Sample random noise
|
70 |
+
noise = torch.randn_like(x_0)
|
71 |
+
|
72 |
+
# Sample random timesteps for each point_cloud
|
73 |
+
timestep = torch.randint(0, self.scheduler.num_train_timesteps, (B,),
|
74 |
+
device=self.device, dtype=torch.long)
|
75 |
+
|
76 |
+
# Add noise to points
|
77 |
+
x_t = self.scheduler.add_noise(x_0, noise, timestep)
|
78 |
+
|
79 |
+
# Conditioning
|
80 |
+
ref_kps = ref_kps[:, :, 0]
|
81 |
+
|
82 |
+
x_t_input = torch.cat([ori_kps.unsqueeze(1), ref_kps.unsqueeze(1), x_t], dim=1)
|
83 |
+
|
84 |
+
# x_t_input = torch.cat([ref_kps.unsqueeze(1), x_t], dim=1)
|
85 |
+
|
86 |
+
# ori_kps_repeat = torch.repeat_interleave(ori_kps.unsqueeze(1), repeats=Nf+1, dim=1)
|
87 |
+
|
88 |
+
# x_t_input = torch.cat([x_t_input, ori_kps_repeat], dim=-1) #B, 32+1, 51+45
|
89 |
+
|
90 |
+
|
91 |
+
aud_feat = torch.cat([torch.zeros(B, 2, 512).cuda(), aud_feat], 1)
|
92 |
+
|
93 |
+
# Augmentation for audio feature
|
94 |
+
if mode in 'train':
|
95 |
+
if torch.rand(1) > 0.3:
|
96 |
+
mean = torch.mean(aud_feat)
|
97 |
+
std = torch.std(aud_feat)
|
98 |
+
sample = torch.normal(mean=torch.full(aud_feat.shape, mean), std=torch.full(aud_feat.shape, std)).cuda()
|
99 |
+
aud_feat = sample + aud_feat
|
100 |
+
else:
|
101 |
+
pass
|
102 |
+
else:
|
103 |
+
pass
|
104 |
+
|
105 |
+
# Forward
|
106 |
+
noise_pred = self.point_model(x_t_input, timestep, context=aud_feat) #torch.cat([mel_feat,style_embed],-1))
|
107 |
+
noise_pred = noise_pred[:, 2:]
|
108 |
+
#
|
109 |
+
# Check
|
110 |
+
if not noise_pred.shape == noise.shape:
|
111 |
+
raise ValueError(f'{noise_pred.shape=} and {noise.shape=}')
|
112 |
+
|
113 |
+
# Loss
|
114 |
+
loss = F.mse_loss(noise_pred, noise)
|
115 |
+
|
116 |
+
loss_pose = F.mse_loss(noise_pred[:, :, :6], noise[:, :, :6])
|
117 |
+
loss_exp = F.mse_loss(noise_pred[:, :, 6:], noise[:, :, 6:])
|
118 |
+
|
119 |
+
|
120 |
+
# Whether to return intermediate steps
|
121 |
+
if return_intermediate_steps:
|
122 |
+
return loss, (x_0, x_t, noise, noise_pred)
|
123 |
+
|
124 |
+
return loss, loss_exp, loss_pose
|
125 |
+
|
126 |
+
# def forward_train(
|
127 |
+
# self,
|
128 |
+
# pc: Optional[Tensor],
|
129 |
+
# ref_kps: Optional[Tensor],
|
130 |
+
# ori_kps: Optional[Tensor],
|
131 |
+
# aud_feat: Optional[Tensor],
|
132 |
+
# mode: str = 'train',
|
133 |
+
# return_intermediate_steps: bool = False
|
134 |
+
# ):
|
135 |
+
#
|
136 |
+
# # Normalize colors and convert to tensor
|
137 |
+
# x_0 = pc
|
138 |
+
# B, Nf, Np, D = x_0.shape# batch, nums of frames, nums of points, 3
|
139 |
+
#
|
140 |
+
# # ori_kps = torch.repeat_interleave(ori_kps.unsqueeze(1), Nf, dim=1) # B, Nf, 45
|
141 |
+
# #
|
142 |
+
# # ref_kps = ref_kps[:, :, 0]
|
143 |
+
# # ref_kps = torch.repeat_interleave(ref_kps.unsqueeze(1), Nf, dim=1) # B, Nf, 91
|
144 |
+
#
|
145 |
+
# x_0 = x_0[:,:,:,0]
|
146 |
+
#
|
147 |
+
# # Sample random noise
|
148 |
+
# noise = torch.randn_like(x_0)
|
149 |
+
#
|
150 |
+
# # Sample random timesteps for each point_cloud
|
151 |
+
# timestep = torch.randint(0, self.scheduler.num_train_timesteps, (B,),
|
152 |
+
# device=self.device, dtype=torch.long)
|
153 |
+
#
|
154 |
+
# # Add noise to points
|
155 |
+
# x_t = self.scheduler.add_noise(x_0, noise, timestep)
|
156 |
+
#
|
157 |
+
# # Conditioning
|
158 |
+
# ref_kps = ref_kps[:,:,0]
|
159 |
+
#
|
160 |
+
# # x_t_input = torch.cat([ref_kps.unsqueeze(1), x_t], dim=1)
|
161 |
+
#
|
162 |
+
# # x_0 = torch.cat([x_0, ref_kps, ori_kps], dim=2) # B, Nf, 91+91+45
|
163 |
+
#
|
164 |
+
# x_t_input = torch.cat([ref_kps.unsqueeze(1), x_t], dim=1)
|
165 |
+
# # x_t_input = torch.cat([ori_kps.unsqueeze(1), ref_kps.unsqueeze(1), x_t], dim=1)
|
166 |
+
#
|
167 |
+
# aud_feat = torch.cat([torch.zeros(B, 1, 512).cuda(), aud_feat], 1)
|
168 |
+
#
|
169 |
+
# # Augmentation for audio feature
|
170 |
+
# if mode in 'train':
|
171 |
+
# if torch.rand(1) > 0.3:
|
172 |
+
# mean = torch.mean(aud_feat)
|
173 |
+
# std = torch.std(aud_feat)
|
174 |
+
# sample = torch.normal(mean=torch.full(aud_feat.shape, mean), std=torch.full(aud_feat.shape, std)).cuda()
|
175 |
+
# aud_feat = sample + aud_feat
|
176 |
+
# else:
|
177 |
+
# pass
|
178 |
+
# else:
|
179 |
+
# pass
|
180 |
+
#
|
181 |
+
# # Forward
|
182 |
+
# noise_pred = self.point_model(x_t_input, timestep, context=aud_feat)
|
183 |
+
# noise_pred = noise_pred[:, 1:]
|
184 |
+
#
|
185 |
+
# # Check
|
186 |
+
# # if not noise_pred.shape == noise.shape:
|
187 |
+
# # raise ValueError(f'{noise_pred.shape=} and {noise.shape=}')
|
188 |
+
#
|
189 |
+
# # Loss
|
190 |
+
# loss = F.mse_loss(noise_pred, noise)
|
191 |
+
#
|
192 |
+
# # loss_kp = F.mse_loss(noise_pred[:, :, :45], noise[:, :, :45])
|
193 |
+
#
|
194 |
+
# # Whether to return intermediate steps
|
195 |
+
# if return_intermediate_steps:
|
196 |
+
# return loss, (x_0, x_t, noise, noise_pred)
|
197 |
+
#
|
198 |
+
# return loss
|
199 |
+
|
200 |
+
# @torch.no_grad()
|
201 |
+
# def forward_sample(
|
202 |
+
# self,
|
203 |
+
# num_points: int,
|
204 |
+
# ref_kps: Optional[Tensor],
|
205 |
+
# ori_kps: Optional[Tensor],
|
206 |
+
# aud_feat: Optional[Tensor],
|
207 |
+
# # Optional overrides
|
208 |
+
# scheduler: Optional[str] = 'ddpm',
|
209 |
+
# # Inference parameters
|
210 |
+
# num_inference_steps: Optional[int] = 1000,
|
211 |
+
# eta: Optional[float] = 0.0, # for DDIM
|
212 |
+
# # Whether to return all the intermediate steps in generation
|
213 |
+
# return_sample_every_n_steps: int = -1,
|
214 |
+
# # Whether to disable tqdm
|
215 |
+
# disable_tqdm: bool = False,
|
216 |
+
# ):
|
217 |
+
#
|
218 |
+
# # Get scheduler from mapping, or use self.scheduler if None
|
219 |
+
# scheduler = self.scheduler if scheduler is None else self.schedulers_map[scheduler]
|
220 |
+
#
|
221 |
+
# # Get the size of the noise
|
222 |
+
# Np = num_points
|
223 |
+
# Nf = aud_feat.size(1)
|
224 |
+
# B = 1
|
225 |
+
# D = 3
|
226 |
+
# device = self.device
|
227 |
+
#
|
228 |
+
# # Sample noise
|
229 |
+
# x_t = torch.randn(B, Nf, Np, D, device=device)
|
230 |
+
#
|
231 |
+
# x_t = x_t[:, :, :, 0]
|
232 |
+
#
|
233 |
+
# # ori_kps = torch.repeat_interleave(ori_kps.unsqueeze(1), Nf, dim=1) # B, Nf, 45
|
234 |
+
#
|
235 |
+
# ref_kps = ref_kps[:, :, 0]
|
236 |
+
# # ref_kps = torch.repeat_interleave(ref_kps.unsqueeze(1), Nf, dim=1) # B, Nf, 91
|
237 |
+
#
|
238 |
+
# # Set timesteps
|
239 |
+
# accepts_offset = "offset" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
240 |
+
# extra_set_kwargs = {"offset": 1} if accepts_offset else {}
|
241 |
+
# scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
|
242 |
+
#
|
243 |
+
# # Prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
244 |
+
# # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
245 |
+
# # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
246 |
+
# # and should be between [0, 1]
|
247 |
+
# accepts_eta = "eta" in set(inspect.signature(scheduler.step).parameters.keys())
|
248 |
+
# extra_step_kwargs = {"eta": eta} if accepts_eta else {}
|
249 |
+
#
|
250 |
+
# # Loop over timesteps
|
251 |
+
# all_outputs = []
|
252 |
+
# return_all_outputs = (return_sample_every_n_steps > 0)
|
253 |
+
# progress_bar = tqdm(scheduler.timesteps.to(device), desc=f'Sampling ({x_t.shape})', disable=disable_tqdm)
|
254 |
+
#
|
255 |
+
# # ori_kps = torch.repeat_interleave(ori_kps[:, 6:].unsqueeze(1), Nf + 1, dim=1)
|
256 |
+
# aud_feat = torch.cat([torch.zeros(B, 1, 512).cuda(), aud_feat], 1)
|
257 |
+
# # aud_feat = torch.cat([ori_kps, aud_feat], -1)
|
258 |
+
#
|
259 |
+
# # aud_feat = torch.cat([torch.zeros(B, 2, 512).cuda(), aud_feat], 1)
|
260 |
+
#
|
261 |
+
# for i, t in enumerate(progress_bar):
|
262 |
+
#
|
263 |
+
# # Conditioning
|
264 |
+
# x_t_input = torch.cat([ref_kps.unsqueeze(1).detach(), x_t], dim=1)
|
265 |
+
# # x_t_input = torch.cat([ori_kps.unsqueeze(1).detach(), ref_kps.unsqueeze(1).detach(), x_t], dim=1)
|
266 |
+
# # x_t_input = torch.cat([x_t, ref_kps, ori_kps], dim=2) # B, Nf, 91+91+45
|
267 |
+
#
|
268 |
+
# # Forward
|
269 |
+
# # noise_pred = self.point_model(x_t_input, t.reshape(1).expand(B), context=aud_feat)[:, 1:]
|
270 |
+
# noise_pred = self.point_model(x_t_input, t.reshape(1).expand(B), context=aud_feat)[:, 1:]
|
271 |
+
#
|
272 |
+
# # noise_pred = noise_pred[:, :, :51]
|
273 |
+
#
|
274 |
+
# # Step
|
275 |
+
# # x_t = x_t[:, :, :51]
|
276 |
+
# x_t = scheduler.step(noise_pred, t, x_t, **extra_step_kwargs).prev_sample
|
277 |
+
#
|
278 |
+
# # Append to output list if desired
|
279 |
+
# if (return_all_outputs and (i % return_sample_every_n_steps == 0 or i == len(scheduler.timesteps) - 1)):
|
280 |
+
# all_outputs.append(x_t)
|
281 |
+
#
|
282 |
+
# # Convert output back into a point cloud, undoing normalization and scaling
|
283 |
+
# output = x_t
|
284 |
+
# output = torch.stack([output, output, output], -1)
|
285 |
+
# if return_all_outputs:
|
286 |
+
# all_outputs = torch.stack(all_outputs, dim=1) # (B, sample_steps, N, D)
|
287 |
+
# return (output, all_outputs) if return_all_outputs else output
|
288 |
+
|
289 |
+
|
290 |
+
@torch.no_grad()
|
291 |
+
def forward_sample(
|
292 |
+
self,
|
293 |
+
num_points: int,
|
294 |
+
ref_kps: Optional[Tensor],
|
295 |
+
ori_kps: Optional[Tensor],
|
296 |
+
aud_feat: Optional[Tensor],
|
297 |
+
# Optional overrides
|
298 |
+
scheduler: Optional[str] = 'ddpm',
|
299 |
+
# Inference parameters
|
300 |
+
num_inference_steps: Optional[int] = 1000,
|
301 |
+
eta: Optional[float] = 0.0, # for DDIM
|
302 |
+
# Whether to return all the intermediate steps in generation
|
303 |
+
return_sample_every_n_steps: int = -1,
|
304 |
+
# Whether to disable tqdm
|
305 |
+
disable_tqdm: bool = False,
|
306 |
+
):
|
307 |
+
|
308 |
+
# Get scheduler from mapping, or use self.scheduler if None
|
309 |
+
scheduler = self.scheduler if scheduler is None else self.schedulers_map[scheduler]
|
310 |
+
|
311 |
+
# Get the size of the noise
|
312 |
+
Np = num_points
|
313 |
+
Nf = aud_feat.size(1)
|
314 |
+
B = 1
|
315 |
+
D = 3
|
316 |
+
device = self.device
|
317 |
+
|
318 |
+
# Sample noise
|
319 |
+
x_t = torch.randn(B, Nf, Np, D, device=device)
|
320 |
+
|
321 |
+
x_t = x_t[:, :, :, 0]
|
322 |
+
|
323 |
+
ref_kps = ref_kps[:,:,0]
|
324 |
+
|
325 |
+
# Set timesteps
|
326 |
+
accepts_offset = "offset" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
327 |
+
extra_set_kwargs = {"offset": 1} if accepts_offset else {}
|
328 |
+
scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
|
329 |
+
|
330 |
+
# Prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
331 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
332 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
333 |
+
# and should be between [0, 1]
|
334 |
+
accepts_eta = "eta" in set(inspect.signature(scheduler.step).parameters.keys())
|
335 |
+
extra_step_kwargs = {"eta": eta} if accepts_eta else {}
|
336 |
+
|
337 |
+
# Loop over timesteps
|
338 |
+
all_outputs = []
|
339 |
+
return_all_outputs = (return_sample_every_n_steps > 0)
|
340 |
+
progress_bar = tqdm(scheduler.timesteps.to(device), desc=f'Sampling ({x_t.shape})', disable=disable_tqdm)
|
341 |
+
|
342 |
+
# ori_kps = torch.repeat_interleave(ori_kps[:, 6:].unsqueeze(1), Nf + 1, dim=1)
|
343 |
+
# aud_feat = torch.cat([torch.zeros(B, 1, 512).cuda(), aud_feat], 1)
|
344 |
+
# aud_feat = torch.cat([ori_kps, aud_feat], -1)
|
345 |
+
|
346 |
+
aud_feat = torch.cat([torch.zeros(B, 2, 512).cuda(), aud_feat], 1)
|
347 |
+
|
348 |
+
for i, t in enumerate(progress_bar):
|
349 |
+
|
350 |
+
# Conditioning
|
351 |
+
# x_t_input = torch.cat([ref_kps.unsqueeze(1), x_t], dim=1)
|
352 |
+
#
|
353 |
+
# ori_kps_repeat = torch.repeat_interleave(ori_kps.unsqueeze(1), repeats=Nf + 1, dim=1)
|
354 |
+
#
|
355 |
+
# x_t_input = torch.cat([x_t_input.detach(), ori_kps_repeat.detach()], dim=-1) # B, 32+1, 51+45
|
356 |
+
|
357 |
+
|
358 |
+
x_t_input = torch.cat([ori_kps.unsqueeze(1).detach(),ref_kps.unsqueeze(1).detach(), x_t], dim=1)
|
359 |
+
# x_t_input = torch.cat([ref_kps.unsqueeze(1).detach(), x_t], dim=1)
|
360 |
+
|
361 |
+
|
362 |
+
# Forward
|
363 |
+
# noise_pred = self.point_model(x_t_input, t.reshape(1).expand(B), context=aud_feat)[:, 1:]
|
364 |
+
noise_pred = self.point_model(x_t_input, t.reshape(1).expand(B), context=aud_feat)[:, 2:]
|
365 |
+
|
366 |
+
|
367 |
+
# Step
|
368 |
+
x_t = scheduler.step(noise_pred, t, x_t, **extra_step_kwargs).prev_sample
|
369 |
+
|
370 |
+
# Append to output list if desired
|
371 |
+
if (return_all_outputs and (i % return_sample_every_n_steps == 0 or i == len(scheduler.timesteps) - 1)):
|
372 |
+
all_outputs.append(x_t)
|
373 |
+
|
374 |
+
# Convert output back into a point cloud, undoing normalization and scaling
|
375 |
+
output = x_t
|
376 |
+
output = torch.stack([output,output,output],-1)
|
377 |
+
if return_all_outputs:
|
378 |
+
all_outputs = torch.stack(all_outputs, dim=1) # (B, sample_steps, N, D)
|
379 |
+
return (output, all_outputs) if return_all_outputs else output
|
380 |
+
|
381 |
+
def forward(self, batch: dict, mode: str = 'train', **kwargs):
|
382 |
+
"""A wrapper around the forward method for training and inference"""
|
383 |
+
|
384 |
+
if mode == 'train':
|
385 |
+
return self.forward_train(
|
386 |
+
pc=batch['sequence_keypoints'],
|
387 |
+
ref_kps=batch['ref_keypoint'],
|
388 |
+
ori_kps=batch['ori_keypoint'],
|
389 |
+
aud_feat=batch['aud_feat'],
|
390 |
+
mode='train',
|
391 |
+
**kwargs)
|
392 |
+
elif mode == 'val':
|
393 |
+
return self.forward_train(
|
394 |
+
pc=batch['sequence_keypoints'],
|
395 |
+
ref_kps=batch['ref_keypoint'],
|
396 |
+
ori_kps=batch['ori_keypoint'],
|
397 |
+
aud_feat=batch['aud_feat'],
|
398 |
+
mode='val',
|
399 |
+
**kwargs)
|
400 |
+
elif mode == 'sample':
|
401 |
+
num_points = 68
|
402 |
+
return self.forward_sample(
|
403 |
+
num_points=num_points,
|
404 |
+
ref_kps=batch['ref_keypoint'],
|
405 |
+
ori_kps=batch['ori_keypoint'],
|
406 |
+
aud_feat=batch['aud_feat'],
|
407 |
+
**kwargs)
|
408 |
+
else:
|
409 |
+
raise NotImplementedError()
|
difpoint/model/model_utils.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
|
7 |
+
|
8 |
+
def set_requires_grad(module: nn.Module, requires_grad: bool):
|
9 |
+
for p in module.parameters():
|
10 |
+
p.requires_grad_(requires_grad)
|
11 |
+
|
12 |
+
|
13 |
+
def compute_distance_transform(mask: torch.Tensor):
|
14 |
+
image_size = mask.shape[-1]
|
15 |
+
distance_transform = torch.stack([
|
16 |
+
torch.from_numpy(cv2.distanceTransform(
|
17 |
+
(1 - m), distanceType=cv2.DIST_L2, maskSize=cv2.DIST_MASK_3
|
18 |
+
) / (image_size / 2))
|
19 |
+
for m in mask.squeeze(1).detach().cpu().numpy().astype(np.uint8)
|
20 |
+
]).unsqueeze(1).clip(0, 1).to(mask.device)
|
21 |
+
return distance_transform
|
22 |
+
|
23 |
+
|
24 |
+
def default(x, d):
|
25 |
+
return d if x is None else x
|
26 |
+
|
27 |
+
def get_custom_betas(beta_start: float, beta_end: float, warmup_frac: float = 0.3, num_train_timesteps: int = 1000):
|
28 |
+
"""Custom beta schedule"""
|
29 |
+
betas = np.linspace(beta_start, beta_end, num_train_timesteps, dtype=np.float32)
|
30 |
+
warmup_frac = 0.3
|
31 |
+
warmup_time = int(num_train_timesteps * warmup_frac)
|
32 |
+
warmup_steps = np.linspace(beta_start, beta_end, warmup_time, dtype=np.float64)
|
33 |
+
warmup_time = min(warmup_time, num_train_timesteps)
|
34 |
+
betas[:warmup_time] = warmup_steps[:warmup_time]
|
35 |
+
return betas
|
difpoint/model/point_model.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
3 |
+
from diffusers import ModelMixin
|
4 |
+
from torch import Tensor
|
5 |
+
|
6 |
+
from .temporaltrans.temptrans import SimpleTemperalPointModel, SimpleTransModel
|
7 |
+
|
8 |
+
class PointModel(ModelMixin, ConfigMixin):
|
9 |
+
@register_to_config
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
model_type: str = 'pvcnn',
|
13 |
+
in_channels: int = 3,
|
14 |
+
out_channels: int = 3,
|
15 |
+
embed_dim: int = 64,
|
16 |
+
dropout: float = 0.1,
|
17 |
+
width_multiplier: int = 1,
|
18 |
+
voxel_resolution_multiplier: int = 1,
|
19 |
+
):
|
20 |
+
super().__init__()
|
21 |
+
self.model_type = model_type
|
22 |
+
if self.model_type == 'simple':
|
23 |
+
self.autocast_context = torch.autocast('cuda', dtype=torch.float32)
|
24 |
+
self.model = SimpleTransModel(
|
25 |
+
embed_dim=embed_dim,
|
26 |
+
num_classes=out_channels,
|
27 |
+
extra_feature_channels=(in_channels - 3),
|
28 |
+
)
|
29 |
+
self.model.output_projection.bias.data.normal_(0, 1e-6)
|
30 |
+
self.model.output_projection.weight.data.normal_(0, 1e-6)
|
31 |
+
else:
|
32 |
+
raise NotImplementedError()
|
33 |
+
|
34 |
+
def forward(self, inputs: Tensor, t: Tensor, context=None) -> Tensor:
|
35 |
+
""" Receives input of shape (B, N, in_channels) and returns output
|
36 |
+
of shape (B, N, out_channels) """
|
37 |
+
with self.autocast_context:
|
38 |
+
return self.model(inputs, t, context)
|
difpoint/model/temporaltrans/__pycache__/temptrans.cpython-310.pyc
ADDED
Binary file (11 kB). View file
|
|
difpoint/model/temporaltrans/__pycache__/temptrans.cpython-38.pyc
ADDED
Binary file (11.1 kB). View file
|
|
difpoint/model/temporaltrans/__pycache__/transformer_utils.cpython-310.pyc
ADDED
Binary file (5.09 kB). View file
|
|
difpoint/model/temporaltrans/__pycache__/transformer_utils.cpython-38.pyc
ADDED
Binary file (5.09 kB). View file
|
|
difpoint/model/temporaltrans/pointnet_util.py
ADDED
@@ -0,0 +1,311 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from time import time
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
|
8 |
+
# reference https://github.com/yanx27/Pointnet_Pointnet2_pytorch, modified by Yang You
|
9 |
+
|
10 |
+
|
11 |
+
def timeit(tag, t):
|
12 |
+
print("{}: {}s".format(tag, time() - t))
|
13 |
+
return time()
|
14 |
+
|
15 |
+
def pc_normalize(pc):
|
16 |
+
centroid = np.mean(pc, axis=0)
|
17 |
+
pc = pc - centroid
|
18 |
+
m = np.max(np.sqrt(np.sum(pc**2, axis=1)))
|
19 |
+
pc = pc / m
|
20 |
+
return pc
|
21 |
+
|
22 |
+
def square_distance(src, dst):
|
23 |
+
"""
|
24 |
+
Calculate Euclid distance between each two points.
|
25 |
+
src^T * dst = xn * xm + yn * ym + zn * zm;
|
26 |
+
sum(src^2, dim=-1) = xn*xn + yn*yn + zn*zn;
|
27 |
+
sum(dst^2, dim=-1) = xm*xm + ym*ym + zm*zm;
|
28 |
+
dist = (xn - xm)^2 + (yn - ym)^2 + (zn - zm)^2
|
29 |
+
= sum(src**2,dim=-1)+sum(dst**2,dim=-1)-2*src^T*dst
|
30 |
+
Input:
|
31 |
+
src: source points, [B, N, C]
|
32 |
+
dst: target points, [B, M, C]
|
33 |
+
Output:
|
34 |
+
dist: per-point square distance, [B, N, M]
|
35 |
+
"""
|
36 |
+
return torch.sum((src[:, :, None] - dst[:, None]) ** 2, dim=-1)
|
37 |
+
|
38 |
+
|
39 |
+
def index_points(points, idx):
|
40 |
+
"""
|
41 |
+
Input:
|
42 |
+
points: input points data, [B, N, C]
|
43 |
+
idx: sample index data, [B, S, [K]]
|
44 |
+
Return:
|
45 |
+
new_points:, indexed points data, [B, S, [K], C]
|
46 |
+
"""
|
47 |
+
raw_size = idx.size()
|
48 |
+
idx = idx.reshape(raw_size[0], -1)
|
49 |
+
res = torch.gather(points, 1, idx[..., None].expand(-1, -1, points.size(-1)))
|
50 |
+
return res.reshape(*raw_size, -1)
|
51 |
+
|
52 |
+
|
53 |
+
def farthest_point_sample(xyz, npoint):
|
54 |
+
"""
|
55 |
+
Input:
|
56 |
+
xyz: pointcloud data, [B, N, 3]
|
57 |
+
npoint: number of samples
|
58 |
+
Return:
|
59 |
+
centroids: sampled pointcloud index, [B, npoint]
|
60 |
+
"""
|
61 |
+
device = xyz.device
|
62 |
+
B, N, C = xyz.shape
|
63 |
+
centroids = torch.zeros(B, npoint, dtype=torch.long).to(device)
|
64 |
+
distance = torch.ones(B, N).to(device) * 1e10
|
65 |
+
farthest = torch.randint(0, N, (B,), dtype=torch.long).to(device)
|
66 |
+
batch_indices = torch.arange(B, dtype=torch.long).to(device)
|
67 |
+
for i in range(npoint):
|
68 |
+
centroids[:, i] = farthest
|
69 |
+
centroid = xyz[batch_indices, farthest, :].view(B, 1, 3)
|
70 |
+
dist = torch.sum((xyz - centroid) ** 2, -1)
|
71 |
+
distance = torch.min(distance, dist)
|
72 |
+
farthest = torch.max(distance, -1)[1]
|
73 |
+
return centroids
|
74 |
+
|
75 |
+
|
76 |
+
def query_ball_point(radius, nsample, xyz, new_xyz):
|
77 |
+
"""
|
78 |
+
Input:
|
79 |
+
radius: local region radius
|
80 |
+
nsample: max sample number in local region
|
81 |
+
xyz: all points, [B, N, 3]
|
82 |
+
new_xyz: query points, [B, S, 3]
|
83 |
+
Return:
|
84 |
+
group_idx: grouped points index, [B, S, nsample]
|
85 |
+
"""
|
86 |
+
device = xyz.device
|
87 |
+
B, N, C = xyz.shape
|
88 |
+
_, S, _ = new_xyz.shape
|
89 |
+
group_idx = torch.arange(N, dtype=torch.long).to(device).view(1, 1, N).repeat([B, S, 1])
|
90 |
+
sqrdists = square_distance(new_xyz, xyz)
|
91 |
+
group_idx[sqrdists > radius ** 2] = N
|
92 |
+
group_idx = group_idx.sort(dim=-1)[0][:, :, :nsample]
|
93 |
+
group_first = group_idx[:, :, 0].view(B, S, 1).repeat([1, 1, nsample])
|
94 |
+
mask = group_idx == N
|
95 |
+
group_idx[mask] = group_first[mask]
|
96 |
+
return group_idx
|
97 |
+
|
98 |
+
|
99 |
+
def sample_and_group(npoint, radius, nsample, xyz, points, returnfps=False, knn=False):
|
100 |
+
"""
|
101 |
+
Input:
|
102 |
+
npoint:
|
103 |
+
radius:
|
104 |
+
nsample:
|
105 |
+
xyz: input points position data, [B, N, 3]
|
106 |
+
points: input points data, [B, N, D]
|
107 |
+
Return:
|
108 |
+
new_xyz: sampled points position data, [B, npoint, nsample, 3]
|
109 |
+
new_points: sampled points data, [B, npoint, nsample, 3+D]
|
110 |
+
"""
|
111 |
+
B, N, C = xyz.shape
|
112 |
+
S = npoint
|
113 |
+
fps_idx = farthest_point_sample(xyz, npoint) # [B, npoint]
|
114 |
+
torch.cuda.empty_cache()
|
115 |
+
new_xyz = index_points(xyz, fps_idx)
|
116 |
+
torch.cuda.empty_cache()
|
117 |
+
if knn:
|
118 |
+
dists = square_distance(new_xyz, xyz) # B x npoint x N
|
119 |
+
idx = dists.argsort()[:, :, :nsample] # B x npoint x K
|
120 |
+
else:
|
121 |
+
idx = query_ball_point(radius, nsample, xyz, new_xyz)
|
122 |
+
torch.cuda.empty_cache()
|
123 |
+
grouped_xyz = index_points(xyz, idx) # [B, npoint, nsample, C]
|
124 |
+
torch.cuda.empty_cache()
|
125 |
+
grouped_xyz_norm = grouped_xyz - new_xyz.view(B, S, 1, C)
|
126 |
+
torch.cuda.empty_cache()
|
127 |
+
|
128 |
+
if points is not None:
|
129 |
+
grouped_points = index_points(points, idx)
|
130 |
+
new_points = torch.cat([grouped_xyz_norm, grouped_points], dim=-1) # [B, npoint, nsample, C+D]
|
131 |
+
else:
|
132 |
+
new_points = grouped_xyz_norm
|
133 |
+
if returnfps:
|
134 |
+
return new_xyz, new_points, grouped_xyz, fps_idx
|
135 |
+
else:
|
136 |
+
return new_xyz, new_points
|
137 |
+
|
138 |
+
|
139 |
+
def sample_and_group_all(xyz, points):
|
140 |
+
"""
|
141 |
+
Input:
|
142 |
+
xyz: input points position data, [B, N, 3]
|
143 |
+
points: input points data, [B, N, D]
|
144 |
+
Return:
|
145 |
+
new_xyz: sampled points position data, [B, 1, 3]
|
146 |
+
new_points: sampled points data, [B, 1, N, 3+D]
|
147 |
+
"""
|
148 |
+
device = xyz.device
|
149 |
+
B, N, C = xyz.shape
|
150 |
+
new_xyz = torch.zeros(B, 1, C).to(device)
|
151 |
+
grouped_xyz = xyz.view(B, 1, N, C)
|
152 |
+
if points is not None:
|
153 |
+
new_points = torch.cat([grouped_xyz, points.view(B, 1, N, -1)], dim=-1)
|
154 |
+
else:
|
155 |
+
new_points = grouped_xyz
|
156 |
+
return new_xyz, new_points
|
157 |
+
|
158 |
+
|
159 |
+
class PointNetSetAbstraction(nn.Module):
|
160 |
+
def __init__(self, npoint, radius, nsample, in_channel, mlp, group_all, knn=False):
|
161 |
+
super(PointNetSetAbstraction, self).__init__()
|
162 |
+
self.npoint = npoint
|
163 |
+
self.radius = radius
|
164 |
+
self.nsample = nsample
|
165 |
+
self.knn = knn
|
166 |
+
self.mlp_convs = nn.ModuleList()
|
167 |
+
self.mlp_bns = nn.ModuleList()
|
168 |
+
last_channel = in_channel
|
169 |
+
for out_channel in mlp:
|
170 |
+
self.mlp_convs.append(nn.Conv2d(last_channel, out_channel, 1))
|
171 |
+
self.mlp_bns.append(nn.BatchNorm2d(out_channel))
|
172 |
+
last_channel = out_channel
|
173 |
+
self.group_all = group_all
|
174 |
+
|
175 |
+
def forward(self, xyz, points):
|
176 |
+
"""
|
177 |
+
Input:
|
178 |
+
xyz: input points position data, [B, N, C]
|
179 |
+
points: input points data, [B, N, C]
|
180 |
+
Return:
|
181 |
+
new_xyz: sampled points position data, [B, S, C]
|
182 |
+
new_points_concat: sample points feature data, [B, S, D']
|
183 |
+
"""
|
184 |
+
if self.group_all:
|
185 |
+
new_xyz, new_points = sample_and_group_all(xyz, points)
|
186 |
+
else:
|
187 |
+
new_xyz, new_points = sample_and_group(self.npoint, self.radius, self.nsample, xyz, points, knn=self.knn)
|
188 |
+
# new_xyz: sampled points position data, [B, npoint, C]
|
189 |
+
# new_points: sampled points data, [B, npoint, nsample, C+D]
|
190 |
+
new_points = new_points.permute(0, 3, 2, 1) # [B, C+D, nsample,npoint]
|
191 |
+
for i, conv in enumerate(self.mlp_convs):
|
192 |
+
bn = self.mlp_bns[i]
|
193 |
+
new_points = F.relu(bn(conv(new_points)))
|
194 |
+
|
195 |
+
new_points = torch.max(new_points, 2)[0].transpose(1, 2)
|
196 |
+
return new_xyz, new_points
|
197 |
+
|
198 |
+
|
199 |
+
class PointNetSetAbstractionMsg(nn.Module):
|
200 |
+
def __init__(self, npoint, radius_list, nsample_list, in_channel, mlp_list, knn=False):
|
201 |
+
super(PointNetSetAbstractionMsg, self).__init__()
|
202 |
+
self.npoint = npoint
|
203 |
+
self.radius_list = radius_list
|
204 |
+
self.nsample_list = nsample_list
|
205 |
+
self.knn = knn
|
206 |
+
self.conv_blocks = nn.ModuleList()
|
207 |
+
self.bn_blocks = nn.ModuleList()
|
208 |
+
for i in range(len(mlp_list)):
|
209 |
+
convs = nn.ModuleList()
|
210 |
+
bns = nn.ModuleList()
|
211 |
+
last_channel = in_channel + 3
|
212 |
+
for out_channel in mlp_list[i]:
|
213 |
+
convs.append(nn.Conv2d(last_channel, out_channel, 1))
|
214 |
+
bns.append(nn.BatchNorm2d(out_channel))
|
215 |
+
last_channel = out_channel
|
216 |
+
self.conv_blocks.append(convs)
|
217 |
+
self.bn_blocks.append(bns)
|
218 |
+
|
219 |
+
def forward(self, xyz, points, seed_idx=None):
|
220 |
+
"""
|
221 |
+
Input:
|
222 |
+
xyz: input points position data, [B, C, N]
|
223 |
+
points: input points data, [B, D, N]
|
224 |
+
Return:
|
225 |
+
new_xyz: sampled points position data, [B, C, S]
|
226 |
+
new_points_concat: sample points feature data, [B, D', S]
|
227 |
+
"""
|
228 |
+
|
229 |
+
B, N, C = xyz.shape
|
230 |
+
S = self.npoint
|
231 |
+
new_xyz = index_points(xyz, farthest_point_sample(xyz, S) if seed_idx is None else seed_idx)
|
232 |
+
new_points_list = []
|
233 |
+
for i, radius in enumerate(self.radius_list):
|
234 |
+
K = self.nsample_list[i]
|
235 |
+
if self.knn:
|
236 |
+
dists = square_distance(new_xyz, xyz) # B x npoint x N
|
237 |
+
group_idx = dists.argsort()[:, :, :K] # B x npoint x K
|
238 |
+
else:
|
239 |
+
group_idx = query_ball_point(radius, K, xyz, new_xyz)
|
240 |
+
grouped_xyz = index_points(xyz, group_idx)
|
241 |
+
grouped_xyz -= new_xyz.view(B, S, 1, C)
|
242 |
+
if points is not None:
|
243 |
+
grouped_points = index_points(points, group_idx)
|
244 |
+
grouped_points = torch.cat([grouped_points, grouped_xyz], dim=-1)
|
245 |
+
else:
|
246 |
+
grouped_points = grouped_xyz
|
247 |
+
|
248 |
+
grouped_points = grouped_points.permute(0, 3, 2, 1) # [B, D, K, S]
|
249 |
+
for j in range(len(self.conv_blocks[i])):
|
250 |
+
conv = self.conv_blocks[i][j]
|
251 |
+
bn = self.bn_blocks[i][j]
|
252 |
+
grouped_points = F.relu(bn(conv(grouped_points)))
|
253 |
+
new_points = torch.max(grouped_points, 2)[0] # [B, D', S]
|
254 |
+
new_points_list.append(new_points)
|
255 |
+
|
256 |
+
new_points_concat = torch.cat(new_points_list, dim=1).transpose(1, 2)
|
257 |
+
return new_xyz, new_points_concat
|
258 |
+
|
259 |
+
|
260 |
+
# NoteL this function swaps N and C
|
261 |
+
class PointNetFeaturePropagation(nn.Module):
|
262 |
+
def __init__(self, in_channel, mlp):
|
263 |
+
super(PointNetFeaturePropagation, self).__init__()
|
264 |
+
self.mlp_convs = nn.ModuleList()
|
265 |
+
self.mlp_bns = nn.ModuleList()
|
266 |
+
last_channel = in_channel
|
267 |
+
for out_channel in mlp:
|
268 |
+
self.mlp_convs.append(nn.Conv1d(last_channel, out_channel, 1))
|
269 |
+
self.mlp_bns.append(nn.BatchNorm1d(out_channel))
|
270 |
+
last_channel = out_channel
|
271 |
+
|
272 |
+
def forward(self, xyz1, xyz2, points1, points2):
|
273 |
+
"""
|
274 |
+
Input:
|
275 |
+
xyz1: input points position data, [B, C, N]
|
276 |
+
xyz2: sampled input points position data, [B, C, S]
|
277 |
+
points1: input points data, [B, D, N]
|
278 |
+
points2: input points data, [B, D, S]
|
279 |
+
Return:
|
280 |
+
new_points: upsampled points data, [B, D', N]
|
281 |
+
"""
|
282 |
+
xyz1 = xyz1.permute(0, 2, 1)
|
283 |
+
xyz2 = xyz2.permute(0, 2, 1)
|
284 |
+
|
285 |
+
points2 = points2.permute(0, 2, 1)
|
286 |
+
B, N, C = xyz1.shape
|
287 |
+
_, S, _ = xyz2.shape
|
288 |
+
|
289 |
+
if S == 1:
|
290 |
+
interpolated_points = points2.repeat(1, N, 1)
|
291 |
+
else:
|
292 |
+
dists = square_distance(xyz1, xyz2)
|
293 |
+
dists, idx = dists.sort(dim=-1)
|
294 |
+
dists, idx = dists[:, :, :3], idx[:, :, :3] # [B, N, 3]
|
295 |
+
|
296 |
+
dist_recip = 1.0 / (dists + 1e-8)
|
297 |
+
norm = torch.sum(dist_recip, dim=2, keepdim=True)
|
298 |
+
weight = dist_recip / norm
|
299 |
+
interpolated_points = torch.sum(index_points(points2, idx) * weight.view(B, N, 3, 1), dim=2)
|
300 |
+
|
301 |
+
if points1 is not None:
|
302 |
+
points1 = points1.permute(0, 2, 1)
|
303 |
+
new_points = torch.cat([points1, interpolated_points], dim=-1)
|
304 |
+
else:
|
305 |
+
new_points = interpolated_points
|
306 |
+
|
307 |
+
new_points = new_points.permute(0, 2, 1)
|
308 |
+
for i, conv in enumerate(self.mlp_convs):
|
309 |
+
bn = self.mlp_bns[i]
|
310 |
+
new_points = F.relu(bn(conv(new_points)))
|
311 |
+
return new_points
|
difpoint/model/temporaltrans/pointtransformerv2.py
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .transformer_utils import BaseTemperalPointModel
|
2 |
+
from copy import deepcopy
|
3 |
+
import torch
|
4 |
+
import einops
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from torch import nn
|
8 |
+
from einops import rearrange
|
9 |
+
import pointops
|
10 |
+
from pointcept.models.utils import offset2batch, batch2offset
|
11 |
+
class PointBatchNorm(nn.Module):
|
12 |
+
"""
|
13 |
+
Batch Normalization for Point Clouds data in shape of [B*N, C], [B*N, L, C]
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(self, embed_channels):
|
17 |
+
super().__init__()
|
18 |
+
self.norm = nn.BatchNorm1d(embed_channels)
|
19 |
+
|
20 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
21 |
+
if input.dim() == 3:
|
22 |
+
return (
|
23 |
+
self.norm(input.transpose(1, 2).contiguous())
|
24 |
+
.transpose(1, 2)
|
25 |
+
.contiguous()
|
26 |
+
)
|
27 |
+
elif input.dim() == 2:
|
28 |
+
return self.norm(input)
|
29 |
+
else:
|
30 |
+
raise NotImplementedError
|
31 |
+
#https://github.com/Pointcept/Pointcept/blob/main/pointcept/models/point_transformer_v2/point_transformer_v2m2_base.py
|
32 |
+
class GroupedVectorAttention(nn.Module):
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
embed_channels,
|
36 |
+
groups,
|
37 |
+
attn_drop_rate=0.0,
|
38 |
+
qkv_bias=True,
|
39 |
+
pe_multiplier=False,
|
40 |
+
pe_bias=True,
|
41 |
+
):
|
42 |
+
super(GroupedVectorAttention, self).__init__()
|
43 |
+
self.embed_channels = embed_channels
|
44 |
+
self.groups = groups
|
45 |
+
assert embed_channels % groups == 0
|
46 |
+
self.attn_drop_rate = attn_drop_rate
|
47 |
+
self.qkv_bias = qkv_bias
|
48 |
+
self.pe_multiplier = pe_multiplier
|
49 |
+
self.pe_bias = pe_bias
|
50 |
+
|
51 |
+
self.linear_q = nn.Sequential(
|
52 |
+
nn.Linear(embed_channels, embed_channels, bias=qkv_bias),
|
53 |
+
PointBatchNorm(embed_channels),
|
54 |
+
nn.ReLU(inplace=True),
|
55 |
+
)
|
56 |
+
self.linear_k = nn.Sequential(
|
57 |
+
nn.Linear(embed_channels, embed_channels, bias=qkv_bias),
|
58 |
+
PointBatchNorm(embed_channels),
|
59 |
+
nn.ReLU(inplace=True),
|
60 |
+
)
|
61 |
+
|
62 |
+
self.linear_v = nn.Linear(embed_channels, embed_channels, bias=qkv_bias)
|
63 |
+
|
64 |
+
if self.pe_multiplier:
|
65 |
+
self.linear_p_multiplier = nn.Sequential(
|
66 |
+
nn.Linear(3, embed_channels),
|
67 |
+
PointBatchNorm(embed_channels),
|
68 |
+
nn.ReLU(inplace=True),
|
69 |
+
nn.Linear(embed_channels, embed_channels),
|
70 |
+
)
|
71 |
+
if self.pe_bias:
|
72 |
+
self.linear_p_bias = nn.Sequential(
|
73 |
+
nn.Linear(3, embed_channels),
|
74 |
+
PointBatchNorm(embed_channels),
|
75 |
+
nn.ReLU(inplace=True),
|
76 |
+
nn.Linear(embed_channels, embed_channels),
|
77 |
+
)
|
78 |
+
self.weight_encoding = nn.Sequential(
|
79 |
+
nn.Linear(embed_channels, groups),
|
80 |
+
PointBatchNorm(groups),
|
81 |
+
nn.ReLU(inplace=True),
|
82 |
+
nn.Linear(groups, groups),
|
83 |
+
)
|
84 |
+
self.softmax = nn.Softmax(dim=1)
|
85 |
+
self.attn_drop = nn.Dropout(attn_drop_rate)
|
86 |
+
|
87 |
+
def forward(self, feat, coord, reference_index):
|
88 |
+
query, key, value = (
|
89 |
+
self.linear_q(feat),
|
90 |
+
self.linear_k(feat),
|
91 |
+
self.linear_v(feat),
|
92 |
+
)
|
93 |
+
key = pointops.grouping(reference_index, key, coord, with_xyz=True)
|
94 |
+
value = pointops.grouping(reference_index, value, coord, with_xyz=False)
|
95 |
+
pos, key = key[:, :, 0:3], key[:, :, 3:]
|
96 |
+
relation_qk = key - query.unsqueeze(1)
|
97 |
+
if self.pe_multiplier:
|
98 |
+
pem = self.linear_p_multiplier(pos)
|
99 |
+
relation_qk = relation_qk * pem
|
100 |
+
if self.pe_bias:
|
101 |
+
peb = self.linear_p_bias(pos)
|
102 |
+
relation_qk = relation_qk + peb
|
103 |
+
value = value + peb
|
104 |
+
|
105 |
+
weight = self.weight_encoding(relation_qk)
|
106 |
+
weight = self.attn_drop(self.softmax(weight))
|
107 |
+
|
108 |
+
mask = torch.sign(reference_index + 1)
|
109 |
+
weight = torch.einsum("n s g, n s -> n s g", weight, mask)
|
110 |
+
value = einops.rearrange(value, "n ns (g i) -> n ns g i", g=self.groups)
|
111 |
+
feat = torch.einsum("n s g i, n s g -> n g i", value, weight)
|
112 |
+
feat = einops.rearrange(feat, "n g i -> n (g i)")
|
113 |
+
return feat
|
114 |
+
|
115 |
+
class BlockSequence(nn.Module):
|
116 |
+
def __init__(
|
117 |
+
self,
|
118 |
+
depth,
|
119 |
+
embed_channels,
|
120 |
+
groups,
|
121 |
+
neighbours=16,
|
122 |
+
qkv_bias=True,
|
123 |
+
pe_multiplier=False,
|
124 |
+
pe_bias=True,
|
125 |
+
attn_drop_rate=0.0,
|
126 |
+
drop_path_rate=0.0,
|
127 |
+
enable_checkpoint=False,
|
128 |
+
):
|
129 |
+
super(BlockSequence, self).__init__()
|
130 |
+
|
131 |
+
if isinstance(drop_path_rate, list):
|
132 |
+
drop_path_rates = drop_path_rate
|
133 |
+
assert len(drop_path_rates) == depth
|
134 |
+
elif isinstance(drop_path_rate, float):
|
135 |
+
drop_path_rates = [deepcopy(drop_path_rate) for _ in range(depth)]
|
136 |
+
else:
|
137 |
+
drop_path_rates = [0.0 for _ in range(depth)]
|
138 |
+
|
139 |
+
self.neighbours = neighbours
|
140 |
+
self.blocks = nn.ModuleList()
|
141 |
+
for i in range(depth):
|
142 |
+
block = Block(
|
143 |
+
embed_channels=embed_channels,
|
144 |
+
groups=groups,
|
145 |
+
qkv_bias=qkv_bias,
|
146 |
+
pe_multiplier=pe_multiplier,
|
147 |
+
pe_bias=pe_bias,
|
148 |
+
attn_drop_rate=attn_drop_rate,
|
149 |
+
drop_path_rate=drop_path_rates[i],
|
150 |
+
enable_checkpoint=enable_checkpoint,
|
151 |
+
)
|
152 |
+
self.blocks.append(block)
|
153 |
+
|
154 |
+
def forward(self, points):
|
155 |
+
coord, feat, offset = points
|
156 |
+
# reference index query of neighbourhood attention
|
157 |
+
# for windows attention, modify reference index query method
|
158 |
+
reference_index, _ = pointops.knn_query(self.neighbours, coord, offset)
|
159 |
+
for block in self.blocks:
|
160 |
+
points = block(points, reference_index)
|
161 |
+
return points
|
162 |
+
|
163 |
+
class GVAPatchEmbed(nn.Module):
|
164 |
+
def __init__(
|
165 |
+
self,
|
166 |
+
depth,
|
167 |
+
in_channels,
|
168 |
+
embed_channels,
|
169 |
+
groups,
|
170 |
+
neighbours=16,
|
171 |
+
qkv_bias=True,
|
172 |
+
pe_multiplier=False,
|
173 |
+
pe_bias=True,
|
174 |
+
attn_drop_rate=0.0,
|
175 |
+
drop_path_rate=0.0,
|
176 |
+
enable_checkpoint=False,
|
177 |
+
):
|
178 |
+
super(GVAPatchEmbed, self).__init__()
|
179 |
+
self.in_channels = in_channels
|
180 |
+
self.embed_channels = embed_channels
|
181 |
+
self.proj = nn.Sequential(
|
182 |
+
nn.Linear(in_channels, embed_channels, bias=False),
|
183 |
+
PointBatchNorm(embed_channels),
|
184 |
+
nn.ReLU(inplace=True),
|
185 |
+
)
|
186 |
+
self.blocks = BlockSequence(
|
187 |
+
depth=depth,
|
188 |
+
embed_channels=embed_channels,
|
189 |
+
groups=groups,
|
190 |
+
neighbours=neighbours,
|
191 |
+
qkv_bias=qkv_bias,
|
192 |
+
pe_multiplier=pe_multiplier,
|
193 |
+
pe_bias=pe_bias,
|
194 |
+
attn_drop_rate=attn_drop_rate,
|
195 |
+
drop_path_rate=drop_path_rate,
|
196 |
+
enable_checkpoint=enable_checkpoint,
|
197 |
+
)
|
198 |
+
|
199 |
+
def forward(self, points):
|
200 |
+
coord, feat, offset = points
|
201 |
+
feat = self.proj(feat)
|
202 |
+
return self.blocks([coord, feat, offset])
|
203 |
+
|
204 |
+
|
205 |
+
class Block(nn.Module):
|
206 |
+
def __init__(
|
207 |
+
self,
|
208 |
+
embed_channels,
|
209 |
+
groups,
|
210 |
+
qkv_bias=True,
|
211 |
+
pe_multiplier=False,
|
212 |
+
pe_bias=True,
|
213 |
+
attn_drop_rate=0.0,
|
214 |
+
drop_path_rate=0.0,
|
215 |
+
enable_checkpoint=False,
|
216 |
+
):
|
217 |
+
super(Block, self).__init__()
|
218 |
+
self.attn = GroupedVectorAttention(
|
219 |
+
embed_channels=embed_channels,
|
220 |
+
groups=groups,
|
221 |
+
qkv_bias=qkv_bias,
|
222 |
+
attn_drop_rate=attn_drop_rate,
|
223 |
+
pe_multiplier=pe_multiplier,
|
224 |
+
pe_bias=pe_bias,
|
225 |
+
)
|
226 |
+
self.fc1 = nn.Linear(embed_channels, embed_channels, bias=False)
|
227 |
+
self.fc3 = nn.Linear(embed_channels, embed_channels, bias=False)
|
228 |
+
self.norm1 = PointBatchNorm(embed_channels)
|
229 |
+
self.norm2 = PointBatchNorm(embed_channels)
|
230 |
+
self.norm3 = PointBatchNorm(embed_channels)
|
231 |
+
self.act = nn.ReLU(inplace=True)
|
232 |
+
self.enable_checkpoint = enable_checkpoint
|
233 |
+
self.drop_path = (
|
234 |
+
DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
|
235 |
+
)
|
236 |
+
|
237 |
+
def forward(self, points, reference_index):
|
238 |
+
coord, feat, offset = points
|
239 |
+
identity = feat
|
240 |
+
feat = self.act(self.norm1(self.fc1(feat)))
|
241 |
+
feat = (
|
242 |
+
self.attn(feat, coord, reference_index)
|
243 |
+
if not self.enable_checkpoint
|
244 |
+
else checkpoint(self.attn, feat, coord, reference_index)
|
245 |
+
)
|
246 |
+
feat = self.act(self.norm2(feat))
|
247 |
+
feat = self.norm3(self.fc3(feat))
|
248 |
+
feat = identity + self.drop_path(feat)
|
249 |
+
feat = self.act(feat)
|
250 |
+
return [coord, feat, offset]
|
difpoint/model/temporaltrans/temptrans.py
ADDED
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch import nn
|
5 |
+
from einops import rearrange
|
6 |
+
from .transformer_utils import BaseTemperalPointModel
|
7 |
+
import math
|
8 |
+
from einops_exts import check_shape, rearrange_many
|
9 |
+
from functools import partial
|
10 |
+
|
11 |
+
class SinusoidalPosEmb(nn.Module):
|
12 |
+
def __init__(self, dim):
|
13 |
+
super().__init__()
|
14 |
+
self.dim = dim
|
15 |
+
|
16 |
+
def forward(self, x):
|
17 |
+
device = x.device
|
18 |
+
half_dim = self.dim // 2
|
19 |
+
emb = math.log(10000) / (half_dim - 1)
|
20 |
+
emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
|
21 |
+
emb = x[:, None] * emb[None, :]
|
22 |
+
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
|
23 |
+
return emb
|
24 |
+
|
25 |
+
class RelativePositionBias(nn.Module):
|
26 |
+
def __init__(
|
27 |
+
self,
|
28 |
+
heads = 8,
|
29 |
+
num_buckets = 32,
|
30 |
+
max_distance = 128
|
31 |
+
):
|
32 |
+
super().__init__()
|
33 |
+
self.num_buckets = num_buckets
|
34 |
+
self.max_distance = max_distance
|
35 |
+
self.relative_attention_bias = nn.Embedding(num_buckets, heads)
|
36 |
+
|
37 |
+
@staticmethod
|
38 |
+
def _relative_position_bucket(relative_position, num_buckets = 32, max_distance = 128):
|
39 |
+
ret = 0
|
40 |
+
n = -relative_position
|
41 |
+
|
42 |
+
num_buckets //= 2
|
43 |
+
ret += (n < 0).long() * num_buckets
|
44 |
+
n = torch.abs(n)
|
45 |
+
|
46 |
+
max_exact = num_buckets // 2
|
47 |
+
is_small = n < max_exact
|
48 |
+
|
49 |
+
val_if_large = max_exact + (
|
50 |
+
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
|
51 |
+
).long()
|
52 |
+
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))
|
53 |
+
|
54 |
+
ret += torch.where(is_small, n, val_if_large)
|
55 |
+
return ret
|
56 |
+
|
57 |
+
def forward(self, n, device):
|
58 |
+
q_pos = torch.arange(n, dtype = torch.long, device = device)
|
59 |
+
k_pos = torch.arange(n, dtype = torch.long, device = device)
|
60 |
+
rel_pos = rearrange(k_pos, 'j -> 1 j') - rearrange(q_pos, 'i -> i 1')
|
61 |
+
rp_bucket = self._relative_position_bucket(rel_pos, num_buckets = self.num_buckets, max_distance = self.max_distance)
|
62 |
+
values = self.relative_attention_bias(rp_bucket)
|
63 |
+
return rearrange(values, 'i j h -> h i j')
|
64 |
+
def exists(x):
|
65 |
+
return x is not None
|
66 |
+
|
67 |
+
class Residual(nn.Module):
|
68 |
+
def __init__(self, fn):
|
69 |
+
super().__init__()
|
70 |
+
self.fn = fn
|
71 |
+
|
72 |
+
def forward(self, x, *args, **kwargs):
|
73 |
+
return self.fn(x, *args, **kwargs) + x
|
74 |
+
class LayerNorm(nn.Module):
|
75 |
+
def __init__(self, dim, eps = 1e-5):
|
76 |
+
super().__init__()
|
77 |
+
self.eps = eps
|
78 |
+
self.gamma = nn.Parameter(torch.ones(1, 1, dim))
|
79 |
+
self.beta = nn.Parameter(torch.zeros(1, 1, dim))
|
80 |
+
|
81 |
+
def forward(self, x):
|
82 |
+
var = torch.var(x, dim = -1, unbiased = False, keepdim = True)
|
83 |
+
mean = torch.mean(x, dim = -1, keepdim = True)
|
84 |
+
return (x - mean) / (var + self.eps).sqrt() * self.gamma + self.beta
|
85 |
+
|
86 |
+
class PreNorm(nn.Module):
|
87 |
+
def __init__(self, dim, fn):
|
88 |
+
super().__init__()
|
89 |
+
self.fn = fn
|
90 |
+
self.norm = LayerNorm(dim)
|
91 |
+
|
92 |
+
def forward(self, x, **kwargs):
|
93 |
+
x = self.norm(x)
|
94 |
+
return self.fn(x, **kwargs)
|
95 |
+
|
96 |
+
|
97 |
+
class EinopsToAndFrom(nn.Module):
|
98 |
+
def __init__(self, from_einops, to_einops, fn):
|
99 |
+
super().__init__()
|
100 |
+
self.from_einops = from_einops
|
101 |
+
self.to_einops = to_einops
|
102 |
+
self.fn = fn
|
103 |
+
|
104 |
+
def forward(self, x, **kwargs):
|
105 |
+
shape = x.shape
|
106 |
+
reconstitute_kwargs = dict(tuple(zip(self.from_einops.split(' '), shape)))
|
107 |
+
x = rearrange(x, f'{self.from_einops} -> {self.to_einops}')
|
108 |
+
x = self.fn(x, **kwargs)
|
109 |
+
x = rearrange(x, f'{self.to_einops} -> {self.from_einops}', **reconstitute_kwargs)
|
110 |
+
return x
|
111 |
+
|
112 |
+
class Attention(nn.Module):
|
113 |
+
def __init__(
|
114 |
+
self, dim, heads=4, attn_head_dim=None, casual_attn=False,rotary_emb = None):
|
115 |
+
super().__init__()
|
116 |
+
self.num_heads = heads
|
117 |
+
head_dim = dim // heads
|
118 |
+
self.casual_attn = casual_attn
|
119 |
+
|
120 |
+
if attn_head_dim is not None:
|
121 |
+
head_dim = attn_head_dim
|
122 |
+
|
123 |
+
all_head_dim = head_dim * self.num_heads
|
124 |
+
self.scale = head_dim ** -0.5
|
125 |
+
self.to_qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
|
126 |
+
self.proj = nn.Linear(all_head_dim, dim)
|
127 |
+
self.rotary_emb = rotary_emb
|
128 |
+
|
129 |
+
def forward(self, x, pos_bias = None):
|
130 |
+
N, device = x.shape[-2], x.device
|
131 |
+
qkv = self.to_qkv(x).chunk(3, dim = -1)
|
132 |
+
|
133 |
+
q, k, v = rearrange_many(qkv, '... n (h d) -> ... h n d', h=self.num_heads)
|
134 |
+
|
135 |
+
q = q * self.scale
|
136 |
+
|
137 |
+
if exists(self.rotary_emb):
|
138 |
+
q = self.rotary_emb.rotate_queries_or_keys(q)
|
139 |
+
k = self.rotary_emb.rotate_queries_or_keys(k)
|
140 |
+
|
141 |
+
sim = torch.einsum('... h i d, ... h j d -> ... h i j', q, k)
|
142 |
+
|
143 |
+
if exists(pos_bias):
|
144 |
+
sim = sim + pos_bias
|
145 |
+
|
146 |
+
if self.casual_attn:
|
147 |
+
mask = torch.tril(torch.ones(sim.size(-1), sim.size(-2))).to(device)
|
148 |
+
sim = sim.masked_fill(mask[..., :, :] == 0, float('-inf'))
|
149 |
+
|
150 |
+
attn = sim.softmax(dim = -1)
|
151 |
+
x = torch.einsum('... h i j, ... h j d -> ... h i d', attn, v)
|
152 |
+
x = rearrange(x, '... h n d -> ... n (h d)')
|
153 |
+
x = self.proj(x)
|
154 |
+
return x
|
155 |
+
|
156 |
+
|
157 |
+
class Block(nn.Module):
|
158 |
+
def __init__(self, dim, dim_out):
|
159 |
+
super().__init__()
|
160 |
+
self.proj = nn.Linear(dim, dim_out)
|
161 |
+
self.norm = LayerNorm(dim)
|
162 |
+
self.act = nn.SiLU()
|
163 |
+
|
164 |
+
def forward(self, x, scale_shift=None):
|
165 |
+
x = self.proj(x)
|
166 |
+
|
167 |
+
if exists(scale_shift):
|
168 |
+
x = self.norm(x)
|
169 |
+
scale, shift = scale_shift
|
170 |
+
x = x * (scale + 1) + shift
|
171 |
+
return self.act(x)
|
172 |
+
|
173 |
+
|
174 |
+
class ResnetBlock(nn.Module):
|
175 |
+
def __init__(self, dim, dim_out, cond_dim=None):
|
176 |
+
super().__init__()
|
177 |
+
self.mlp = nn.Sequential(
|
178 |
+
nn.SiLU(),
|
179 |
+
nn.Linear(cond_dim, dim_out * 2)
|
180 |
+
) if exists(cond_dim) else None
|
181 |
+
|
182 |
+
self.block1 = Block(dim, dim_out)
|
183 |
+
self.block2 = Block(dim_out, dim_out)
|
184 |
+
|
185 |
+
def forward(self, x, cond_emb=None):
|
186 |
+
scale_shift = None
|
187 |
+
if exists(self.mlp):
|
188 |
+
assert exists(cond_emb), 'time emb must be passed in'
|
189 |
+
cond_emb = self.mlp(cond_emb)
|
190 |
+
#cond_emb = rearrange(cond_emb, 'b f c -> b f 1 c')
|
191 |
+
scale_shift = cond_emb.chunk(2, dim=-1)
|
192 |
+
|
193 |
+
h = self.block1(x, scale_shift=scale_shift)
|
194 |
+
h = self.block2(h)
|
195 |
+
return h + x
|
196 |
+
|
197 |
+
from rotary_embedding_torch import RotaryEmbedding
|
198 |
+
|
199 |
+
|
200 |
+
class SimpleTransModel(BaseTemperalPointModel):
|
201 |
+
"""
|
202 |
+
A simple model that processes a point cloud by applying a series of MLPs to each point
|
203 |
+
individually, along with some pooled global features.
|
204 |
+
"""
|
205 |
+
|
206 |
+
def get_layers(self):
|
207 |
+
|
208 |
+
|
209 |
+
# self.input_projection = nn.Linear(
|
210 |
+
# in_features=51,
|
211 |
+
# out_features=self.dim
|
212 |
+
# )
|
213 |
+
|
214 |
+
self.input_projection = nn.Linear(
|
215 |
+
in_features=70,
|
216 |
+
out_features=self.dim
|
217 |
+
)
|
218 |
+
|
219 |
+
cond_dim = 512 + self.timestep_embed_dim
|
220 |
+
|
221 |
+
num_head = self.dim//64
|
222 |
+
rotary_emb = RotaryEmbedding(min(32, num_head))
|
223 |
+
|
224 |
+
self.time_rel_pos_bias = RelativePositionBias(heads=num_head, max_distance=128) # realistically will not be able to generate that many frames of video... yet
|
225 |
+
|
226 |
+
temporal_casual_attn = lambda dim: Attention(dim, heads=num_head, casual_attn=False,rotary_emb=rotary_emb)
|
227 |
+
|
228 |
+
cond_block= partial(ResnetBlock,cond_dim=cond_dim)
|
229 |
+
|
230 |
+
layers = nn.ModuleList([])
|
231 |
+
|
232 |
+
for _ in range(self.num_layers):
|
233 |
+
layers.append(nn.ModuleList([
|
234 |
+
cond_block(self.dim,self.dim),
|
235 |
+
cond_block(self.dim,self.dim),
|
236 |
+
Residual(PreNorm(self.dim,temporal_casual_attn(self.dim)))
|
237 |
+
]))
|
238 |
+
|
239 |
+
return layers
|
240 |
+
|
241 |
+
def forward(self, inputs: torch.Tensor, timesteps: torch.Tensor, context=None):
|
242 |
+
"""
|
243 |
+
Apply the model to an input batch.
|
244 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
245 |
+
:param timesteps: a 1-D batch of timesteps.
|
246 |
+
:param context: conditioning plugged in via crossattn
|
247 |
+
"""
|
248 |
+
# Prepare inputs
|
249 |
+
|
250 |
+
batch, num_frames, channels = inputs.size()
|
251 |
+
|
252 |
+
device = inputs.device
|
253 |
+
#assert channels==3
|
254 |
+
|
255 |
+
# Positional encoding of point coords
|
256 |
+
# inputs=rearrange(inputs,'b f p c->(b f) p c')
|
257 |
+
# pos_emb=self.positional_encoding(inputs)
|
258 |
+
x = self.input_projection(inputs)
|
259 |
+
#x = rearrange(x,'(b f) p c-> b f p c',b=batch)
|
260 |
+
|
261 |
+
t_emb = self.time_mlp(timesteps) if exists(self.time_mlp) else None
|
262 |
+
t_emb = t_emb[:,None,:].expand(-1, num_frames, -1) # b f c
|
263 |
+
if context is not None:
|
264 |
+
t_emb = torch.cat([t_emb, context],-1)
|
265 |
+
|
266 |
+
time_rel_pos_bias = self.time_rel_pos_bias(num_frames, device=device)
|
267 |
+
|
268 |
+
for block1, block2, temporal_casual_attn in self.layers:
|
269 |
+
x = block1(x, t_emb)
|
270 |
+
x = block2(x, t_emb)
|
271 |
+
x = temporal_casual_attn(x, pos_bias=time_rel_pos_bias)
|
272 |
+
|
273 |
+
# Project
|
274 |
+
x = self.output_projection(x)
|
275 |
+
return x
|
276 |
+
|
277 |
+
|
278 |
+
|
279 |
+
class SimpleTemperalPointModel(BaseTemperalPointModel):
|
280 |
+
"""
|
281 |
+
A simple model that processes a point cloud by applying a series of MLPs to each point
|
282 |
+
individually, along with some pooled global features.
|
283 |
+
"""
|
284 |
+
|
285 |
+
def get_layers(self):
|
286 |
+
audio_dim = 512
|
287 |
+
|
288 |
+
cond_dim = audio_dim + self.timestep_embed_dim
|
289 |
+
|
290 |
+
num_head = 4
|
291 |
+
rotary_emb = RotaryEmbedding(min(32, num_head))
|
292 |
+
self.time_rel_pos_bias = RelativePositionBias(heads=num_head, max_distance=128) # realistically will not be able to generate that many frames of video... yet
|
293 |
+
|
294 |
+
temporal_casual_attn = lambda dim: EinopsToAndFrom('b f p c', 'b p f c', Attention(dim, heads=num_head, casual_attn=False, rotary_emb = rotary_emb))
|
295 |
+
|
296 |
+
spatial_kp_attn= lambda dim: EinopsToAndFrom('b f p c', 'b f p c', Attention(dim, heads=num_head))
|
297 |
+
|
298 |
+
cond_block= partial(ResnetBlock,cond_dim=cond_dim)
|
299 |
+
|
300 |
+
layers = nn.ModuleList([])
|
301 |
+
|
302 |
+
for _ in range(self.num_layers):
|
303 |
+
layers.append(nn.ModuleList([
|
304 |
+
cond_block(self.dim,self.dim),
|
305 |
+
cond_block(self.dim,self.dim),
|
306 |
+
Residual(PreNorm(self.dim,spatial_kp_attn(self.dim))),
|
307 |
+
Residual(PreNorm(self.dim,temporal_casual_attn(self.dim)))
|
308 |
+
]))
|
309 |
+
|
310 |
+
return layers
|
311 |
+
|
312 |
+
def forward(self, inputs: torch.Tensor, timesteps: torch.Tensor, context=None):
|
313 |
+
"""
|
314 |
+
Apply the model to an input batch.
|
315 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
316 |
+
:param timesteps: a 1-D batch of timesteps.
|
317 |
+
:param context: conditioning plugged in via crossattn
|
318 |
+
"""
|
319 |
+
# Prepare inputs
|
320 |
+
|
321 |
+
batch, num_frames, num_points, channels = inputs.size()
|
322 |
+
device = inputs.device
|
323 |
+
#assert channels==3
|
324 |
+
|
325 |
+
# Positional encoding of point coords
|
326 |
+
inputs=rearrange(inputs,'b f p c->(b f) p c')
|
327 |
+
pos_emb=self.positional_encoding(inputs)
|
328 |
+
x = self.input_projection(torch.cat([inputs, pos_emb], -1))
|
329 |
+
x = rearrange(x,'(b f) p c-> b f p c',b=batch)
|
330 |
+
|
331 |
+
t_emb = self.time_mlp(timesteps) if exists(self.time_mlp) else None
|
332 |
+
t_emb = t_emb[:,None,:].expand(-1, num_frames, -1) # b f c
|
333 |
+
if context is not None:
|
334 |
+
t_emb = torch.cat([t_emb,context],-1)
|
335 |
+
|
336 |
+
time_rel_pos_bias = self.time_rel_pos_bias(num_frames, device=device)
|
337 |
+
|
338 |
+
for block1, block2, spatial_kp_attn, temporal_casual_attn in self.layers:
|
339 |
+
x = block1(x, t_emb)
|
340 |
+
x = block2(x, t_emb)
|
341 |
+
x = spatial_kp_attn(x)
|
342 |
+
x = temporal_casual_attn(x, pos_bias=time_rel_pos_bias)
|
343 |
+
|
344 |
+
# Project
|
345 |
+
x = self.output_projection(x)
|
346 |
+
return x
|
347 |
+
|
difpoint/model/temporaltrans/transformer_utils.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch import nn
|
5 |
+
from einops import rearrange
|
6 |
+
import math
|
7 |
+
from einops_exts import check_shape, rearrange_many
|
8 |
+
from torch import Size, Tensor, nn
|
9 |
+
class SinusoidalPosEmb(nn.Module):
|
10 |
+
def __init__(self, dim):
|
11 |
+
super().__init__()
|
12 |
+
self.dim = dim
|
13 |
+
|
14 |
+
def forward(self, x):
|
15 |
+
device = x.device
|
16 |
+
half_dim = self.dim // 2
|
17 |
+
emb = math.log(10000) / (half_dim - 1)
|
18 |
+
emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
|
19 |
+
emb = x[:, None] * emb[None, :]
|
20 |
+
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
|
21 |
+
return emb
|
22 |
+
|
23 |
+
|
24 |
+
def map_positional_encoding(v: Tensor, freq_bands: Tensor) -> Tensor:
|
25 |
+
"""Map v to positional encoding representation phi(v)
|
26 |
+
|
27 |
+
Arguments:
|
28 |
+
v (Tensor): input features (B, IFeatures)
|
29 |
+
freq_bands (Tensor): frequency bands (N_freqs, )
|
30 |
+
|
31 |
+
Returns:
|
32 |
+
phi(v) (Tensor): fourrier features (B, 3 + (2 * N_freqs) * 3)
|
33 |
+
"""
|
34 |
+
pe = [v]
|
35 |
+
for freq in freq_bands:
|
36 |
+
fv = freq * v
|
37 |
+
pe += [torch.sin(fv), torch.cos(fv)]
|
38 |
+
return torch.cat(pe, dim=-1)
|
39 |
+
|
40 |
+
class FeatureMapping(nn.Module):
|
41 |
+
"""FeatureMapping nn.Module
|
42 |
+
|
43 |
+
Maps v to features following transformation phi(v)
|
44 |
+
|
45 |
+
Arguments:
|
46 |
+
i_dim (int): input dimensions
|
47 |
+
o_dim (int): output dimensions
|
48 |
+
"""
|
49 |
+
|
50 |
+
def __init__(self, i_dim: int, o_dim: int) -> None:
|
51 |
+
super().__init__()
|
52 |
+
self.i_dim = i_dim
|
53 |
+
self.o_dim = o_dim
|
54 |
+
|
55 |
+
def forward(self, v: Tensor) -> Tensor:
|
56 |
+
"""FeratureMapping forward pass
|
57 |
+
|
58 |
+
Arguments:
|
59 |
+
v (Tensor): input features (B, IFeatures)
|
60 |
+
|
61 |
+
Returns:
|
62 |
+
phi(v) (Tensor): mapped features (B, OFeatures)
|
63 |
+
"""
|
64 |
+
raise NotImplementedError("Forward pass not implemented yet!")
|
65 |
+
|
66 |
+
class PositionalEncoding(FeatureMapping):
|
67 |
+
"""PositionalEncoding module
|
68 |
+
|
69 |
+
Maps v to positional encoding representation phi(v)
|
70 |
+
|
71 |
+
Arguments:
|
72 |
+
i_dim (int): input dimension for v
|
73 |
+
N_freqs (int): #frequency to sample (default: 10)
|
74 |
+
"""
|
75 |
+
|
76 |
+
def __init__(
|
77 |
+
self,
|
78 |
+
i_dim: int,
|
79 |
+
N_freqs: int = 10,
|
80 |
+
) -> None:
|
81 |
+
super().__init__(i_dim, 3 + (2 * N_freqs) * 3)
|
82 |
+
self.N_freqs = N_freqs
|
83 |
+
|
84 |
+
a, b = 1, self.N_freqs - 1
|
85 |
+
freq_bands = 2 ** torch.linspace(a, b, self.N_freqs)
|
86 |
+
self.register_buffer("freq_bands", freq_bands)
|
87 |
+
|
88 |
+
def forward(self, v: Tensor) -> Tensor:
|
89 |
+
"""Map v to positional encoding representation phi(v)
|
90 |
+
|
91 |
+
Arguments:
|
92 |
+
v (Tensor): input features (B, IFeatures)
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
phi(v) (Tensor): fourrier features (B, 3 + (2 * N_freqs) * 3)
|
96 |
+
"""
|
97 |
+
return map_positional_encoding(v, self.freq_bands)
|
98 |
+
|
99 |
+
class BaseTemperalPointModel(nn.Module):
|
100 |
+
""" A base class providing useful methods for point cloud processing. """
|
101 |
+
|
102 |
+
def __init__(
|
103 |
+
self,
|
104 |
+
*,
|
105 |
+
num_classes,
|
106 |
+
embed_dim,
|
107 |
+
extra_feature_channels,
|
108 |
+
dim: int = 768,
|
109 |
+
num_layers: int = 6
|
110 |
+
):
|
111 |
+
super().__init__()
|
112 |
+
|
113 |
+
self.extra_feature_channels = extra_feature_channels
|
114 |
+
self.timestep_embed_dim = 256
|
115 |
+
self.output_dim = num_classes
|
116 |
+
self.dim = dim
|
117 |
+
self.num_layers = num_layers
|
118 |
+
|
119 |
+
|
120 |
+
self.time_mlp = nn.Sequential(
|
121 |
+
SinusoidalPosEmb(dim),
|
122 |
+
nn.Linear(dim, self.timestep_embed_dim ),
|
123 |
+
nn.SiLU(),
|
124 |
+
nn.Linear(self.timestep_embed_dim , self.timestep_embed_dim )
|
125 |
+
)
|
126 |
+
|
127 |
+
self.positional_encoding = PositionalEncoding(i_dim=3, N_freqs=10)
|
128 |
+
positional_encoding_d_out = 3 + (2 * 10) * 3
|
129 |
+
|
130 |
+
# Input projection (point coords, point coord encodings, other features, and timestep embeddings)
|
131 |
+
|
132 |
+
self.input_projection = nn.Linear(
|
133 |
+
in_features=(3 + positional_encoding_d_out),
|
134 |
+
out_features=self.dim
|
135 |
+
)#b f p c
|
136 |
+
|
137 |
+
# Transformer layers
|
138 |
+
self.layers = self.get_layers()
|
139 |
+
|
140 |
+
# Output projection
|
141 |
+
self.output_projection = nn.Linear(self.dim, self.output_dim)
|
142 |
+
def get_layers(self):
|
143 |
+
raise NotImplementedError('This method should be implemented by subclasses')
|
144 |
+
|
145 |
+
def forward(self, inputs: torch.Tensor, t: torch.Tensor):
|
146 |
+
raise NotImplementedError('This method should be implemented by subclasses')
|
difpoint/src/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# @Author : wenshao
|
3 |
+
# @Email : [email protected]
|
4 |
+
# @Project : FasterLivePortrait
|
5 |
+
# @FileName: __init__.py.py
|
difpoint/src/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (144 Bytes). View file
|
|
difpoint/src/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (157 Bytes). View file
|
|
difpoint/src/__pycache__/live_portrait_pipeline.cpython-310.pyc
ADDED
Binary file (8.08 kB). View file
|
|
difpoint/src/__pycache__/live_portrait_wrapper.cpython-310.pyc
ADDED
Binary file (10.2 kB). View file
|
|
difpoint/src/config/__init__.py
ADDED
File without changes
|
difpoint/src/config/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (137 Bytes). View file
|
|
difpoint/src/config/__pycache__/argument_config.cpython-310.pyc
ADDED
Binary file (1.82 kB). View file
|
|
difpoint/src/config/__pycache__/base_config.cpython-310.pyc
ADDED
Binary file (1.08 kB). View file
|
|
difpoint/src/config/__pycache__/crop_config.cpython-310.pyc
ADDED
Binary file (1.14 kB). View file
|
|
difpoint/src/config/__pycache__/inference_config.cpython-310.pyc
ADDED
Binary file (2.39 kB). View file
|
|
difpoint/src/config/argument_config.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding: utf-8
|
2 |
+
|
3 |
+
"""
|
4 |
+
All configs for user
|
5 |
+
"""
|
6 |
+
|
7 |
+
from dataclasses import dataclass
|
8 |
+
import tyro
|
9 |
+
from typing_extensions import Annotated
|
10 |
+
from typing import Optional
|
11 |
+
from .base_config import PrintableConfig, make_abs_path
|
12 |
+
|
13 |
+
|
14 |
+
@dataclass(repr=False) # use repr from PrintableConfig
|
15 |
+
class ArgumentConfig(PrintableConfig):
|
16 |
+
########## input arguments ##########
|
17 |
+
source_image: Annotated[str, tyro.conf.arg(aliases=["-s"])] = make_abs_path('../../assets/examples/source/s6.jpg') # path to the source portrait
|
18 |
+
driving_info: Annotated[str, tyro.conf.arg(aliases=["-d"])] = make_abs_path('../../assets/examples/driving/d12.mp4') # path to driving video or template (.pkl format)
|
19 |
+
output_dir: Annotated[str, tyro.conf.arg(aliases=["-o"])] = 'animations/' # directory to save output video
|
20 |
+
|
21 |
+
########## inference arguments ##########
|
22 |
+
flag_use_half_precision: bool = False # whether to use half precision (FP16). If black boxes appear, it might be due to GPU incompatibility; set to False.
|
23 |
+
flag_crop_driving_video: bool = False # whether to crop the driving video, if the given driving info is a video
|
24 |
+
device_id: int = 0 # gpu device id
|
25 |
+
flag_force_cpu: bool = False # force cpu inference, WIP!
|
26 |
+
flag_lip_zero: bool = False # whether let the lip to close state before animation, only take effect when flag_eye_retargeting and flag_lip_retargeting is False
|
27 |
+
flag_eye_retargeting: bool = False # not recommend to be True, WIP
|
28 |
+
flag_lip_retargeting: bool = False # not recommend to be True, WIP
|
29 |
+
flag_stitching: bool = False # recommend to True if head movement is small, False if head movement is large
|
30 |
+
flag_relative_motion: bool = False # whether to use relative motion
|
31 |
+
flag_pasteback: bool = False # whether to paste-back/stitch the animated face cropping from the face-cropping space to the original image space
|
32 |
+
flag_do_crop: bool = False # whether to crop the source portrait to the face-cropping space
|
33 |
+
flag_do_rot: bool = False # whether to conduct the rotation when flag_do_crop is True
|
34 |
+
|
35 |
+
########## crop arguments ##########
|
36 |
+
scale: float = 2.3 # the ratio of face area is smaller if scale is larger
|
37 |
+
vx_ratio: float = 0 # the ratio to move the face to left or right in cropping space
|
38 |
+
vy_ratio: float = -0.125 # the ratio to move the face to up or down in cropping space
|
39 |
+
|
40 |
+
scale_crop_video: float = 2.2 # scale factor for cropping video
|
41 |
+
vx_ratio_crop_video: float = 0. # adjust y offset
|
42 |
+
vy_ratio_crop_video: float = -0.1 # adjust x offset
|
43 |
+
|
44 |
+
########## gradio arguments ##########
|
45 |
+
server_port: Annotated[int, tyro.conf.arg(aliases=["-p"])] = 8890 # port for gradio server
|
46 |
+
share: bool = False # whether to share the server to public
|
47 |
+
server_name: Optional[str] = "127.0.0.1" # set the local server name, "0.0.0.0" to broadcast all
|
48 |
+
flag_do_torch_compile: bool = False # whether to use torch.compile to accelerate generation
|
difpoint/src/config/base_config.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding: utf-8
|
2 |
+
|
3 |
+
"""
|
4 |
+
pretty printing class
|
5 |
+
"""
|
6 |
+
|
7 |
+
from __future__ import annotations
|
8 |
+
import os.path as osp
|
9 |
+
from typing import Tuple
|
10 |
+
|
11 |
+
|
12 |
+
def make_abs_path(fn):
|
13 |
+
return osp.join(osp.dirname(osp.realpath(__file__)), fn)
|
14 |
+
|
15 |
+
|
16 |
+
class PrintableConfig: # pylint: disable=too-few-public-methods
|
17 |
+
"""Printable Config defining str function"""
|
18 |
+
|
19 |
+
def __repr__(self):
|
20 |
+
lines = [self.__class__.__name__ + ":"]
|
21 |
+
for key, val in vars(self).items():
|
22 |
+
if isinstance(val, Tuple):
|
23 |
+
flattened_val = "["
|
24 |
+
for item in val:
|
25 |
+
flattened_val += str(item) + "\n"
|
26 |
+
flattened_val = flattened_val.rstrip("\n")
|
27 |
+
val = flattened_val + "]"
|
28 |
+
lines += f"{key}: {str(val)}".split("\n")
|
29 |
+
return "\n ".join(lines)
|
difpoint/src/config/crop_config.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding: utf-8
|
2 |
+
|
3 |
+
"""
|
4 |
+
parameters used for crop faces
|
5 |
+
"""
|
6 |
+
|
7 |
+
from dataclasses import dataclass
|
8 |
+
|
9 |
+
from .base_config import PrintableConfig
|
10 |
+
|
11 |
+
|
12 |
+
@dataclass(repr=False) # use repr from PrintableConfig
|
13 |
+
class CropConfig(PrintableConfig):
|
14 |
+
insightface_root: str = "./downloaded_repo/pretrained_weights/insightface"
|
15 |
+
landmark_ckpt_path: str = "./downloaded_repo/pretrained_weights/liveportrait/landmark.onnx"
|
16 |
+
device_id: int = 0 # gpu device id
|
17 |
+
flag_force_cpu: bool = False # force cpu inference, WIP
|
18 |
+
########## source image cropping option ##########
|
19 |
+
dsize: int = 512 # crop size
|
20 |
+
scale: float = 2.0 # scale factor
|
21 |
+
vx_ratio: float = 0 # vx ratio
|
22 |
+
vy_ratio: float = -0.125 # vy ratio +up, -down
|
23 |
+
max_face_num: int = 0 # max face number, 0 mean no limit
|
24 |
+
|
25 |
+
########## driving video auto cropping option ##########
|
26 |
+
scale_crop_video: float = 2.2 # 2.0 # scale factor for cropping video
|
27 |
+
vx_ratio_crop_video: float = 0.0 # adjust y offset
|
28 |
+
vy_ratio_crop_video: float = -0.1 # adjust x offset
|
29 |
+
direction: str = "large-small" # direction of cropping
|
difpoint/src/config/inference_config.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding: utf-8
|
2 |
+
|
3 |
+
"""
|
4 |
+
config dataclass used for inference
|
5 |
+
"""
|
6 |
+
|
7 |
+
import os.path as osp
|
8 |
+
import cv2
|
9 |
+
from numpy import ndarray
|
10 |
+
from dataclasses import dataclass
|
11 |
+
from typing import Literal, Tuple
|
12 |
+
from .base_config import PrintableConfig, make_abs_path
|
13 |
+
|
14 |
+
|
15 |
+
@dataclass(repr=False) # use repr from PrintableConfig
|
16 |
+
class InferenceConfig(PrintableConfig):
|
17 |
+
# MODEL CONFIG, NOT EXPORTED PARAMS
|
18 |
+
models_config: str = make_abs_path('./models.yaml') # portrait animation config
|
19 |
+
checkpoint_F: str = './downloaded_repo/pretrained_weights/liveportrait/base_models/appearance_feature_extractor.pth' # path to checkpoint of F
|
20 |
+
checkpoint_M: str = './downloaded_repo/pretrained_weights/liveportrait/base_models/motion_extractor.pth' # path to checkpoint pf M
|
21 |
+
checkpoint_G: str = './downloaded_repo/pretrained_weights/liveportrait/base_models/spade_generator.pth' # path to checkpoint of G
|
22 |
+
checkpoint_W: str = './downloaded_repo/pretrained_weights/liveportrait/base_models/warping_module.pth' # path to checkpoint of W
|
23 |
+
checkpoint_S: str = './downloaded_repo/pretrained_weights/liveportrait/base_models/retargeting_models/stitching_retargeting_module.pth' # path to checkpoint to S and R_eyes, R_lip
|
24 |
+
|
25 |
+
# EXPORTED PARAMS
|
26 |
+
flag_use_half_precision: bool = True
|
27 |
+
flag_crop_driving_video: bool = False
|
28 |
+
device_id: int = 0
|
29 |
+
flag_lip_zero: bool = False
|
30 |
+
flag_eye_retargeting: bool = False
|
31 |
+
flag_lip_retargeting: bool = False
|
32 |
+
flag_stitching: bool = False
|
33 |
+
flag_relative_motion: bool = False
|
34 |
+
flag_pasteback: bool = False
|
35 |
+
flag_do_crop: bool = False
|
36 |
+
flag_do_rot: bool = False
|
37 |
+
flag_force_cpu: bool = False
|
38 |
+
flag_do_torch_compile: bool = False
|
39 |
+
|
40 |
+
# NOT EXPORTED PARAMS
|
41 |
+
lip_zero_threshold: float = 0.03 # threshold for flag_lip_zero
|
42 |
+
anchor_frame: int = 0 # TO IMPLEMENT
|
43 |
+
|
44 |
+
input_shape: Tuple[int, int] = (256, 256) # input shape
|
45 |
+
output_format: Literal['mp4', 'gif'] = 'mp4' # output video format
|
46 |
+
crf: int = 15 # crf for output video
|
47 |
+
output_fps: int = 25 # default output fps
|
48 |
+
|
49 |
+
mask_crop: ndarray = cv2.imread(make_abs_path('../utils/resources/mask_template.png'), cv2.IMREAD_COLOR)
|
50 |
+
size_gif: int = 256 # default gif size, TO IMPLEMENT
|
51 |
+
source_max_dim: int = 1280 # the max dim of height and width of source image
|
52 |
+
source_division: int = 2 # make sure the height and width of source image can be divided by this number
|