KDTalker / difpoint /src /models /warping_spade_model.py
ChaolongYang's picture
Upload 242 files
475d332 verified
# -*- coding: utf-8 -*-
# @Author : wenshao
# @Email : [email protected]
# @Project : FasterLivePortrait
# @FileName: warping_spade_model.py
import pdb
import numpy as np
from .base_model import BaseModel
import torch
from torch.cuda import nvtx
from .predictor import numpy_to_torch_dtype_dict
class WarpingSpadeModel(BaseModel):
"""
WarpingSpade Model
"""
def __init__(self, **kwargs):
super(WarpingSpadeModel, self).__init__(**kwargs)
def input_process(self, *data):
feature_3d, kp_source, kp_driving = data
return feature_3d, kp_driving, kp_source
def output_process(self, *data):
if self.predict_type != "trt":
out = torch.from_numpy(data[0]).to(self.device).float()
else:
out = data[0]
out = out.permute(0, 2, 3, 1)
out = torch.clip(out, 0, 1) * 255
return out[0]
def predict_trt(self, *data):
nvtx.range_push("forward")
feed_dict = {}
for i, inp in enumerate(self.predictor.inputs):
if isinstance(data[i], torch.Tensor):
feed_dict[inp['name']] = data[i]
else:
feed_dict[inp['name']] = torch.from_numpy(data[i]).to(device=self.device,
dtype=numpy_to_torch_dtype_dict[inp['dtype']])
preds_dict = self.predictor.predict(feed_dict, self.cudaStream)
outs = []
for i, out in enumerate(self.predictor.outputs):
outs.append(preds_dict[out["name"]].clone())
nvtx.range_pop()
return outs
def predict(self, *data):
data = self.input_process(*data)
if self.predict_type == "trt":
preds = self.predict_trt(*data)
else:
preds = self.predictor.predict(*data)
outputs = self.output_process(*preds)
return outputs